Free Access
Volume 53, Number 3, May-June 2019
Page(s) 1005 - 1030
Published online 25 June 2019
  1. R.A. Adams and J.J.F. Fournier, Sobolev Spaces. Elsevier Science (2003). [Google Scholar]
  2. V. Akcelik, G. Biros and O. Ghattas, Parallel Multiscale Gauss-Newton-Krylov Methods for Inverse Wave Propagation, Supercomputing. In: ACM/IEEE 2002 Conference (2002) 41. [Google Scholar]
  3. G. Alessandrini, M.V. de Hoop, R. Gaburro and E. Sincich, Lipschitz stability for a piecewise linear Schrödinger potential from local Cauchy data. Asympt. Anal. 108 (2018) 115–149. [Google Scholar]
  4. G. Alessandrini and S. Vessella, Lipschitz stability for the inverse conductivity problem. Adv. Appl. Math. 35 (2005) 207–241. [Google Scholar]
  5. P.R. Amestoy, A. Guermouche, J.-Y. L’Excellent and S. Pralet, Hybrid scheduling for the parallel solution of linear systems. Parallel Comp. 32 (2006) 136–156. [CrossRef] [MathSciNet] [Google Scholar]
  6. J.B. Bednar, C. Shin and S. Pyun, Comparison of waveform inversion, part 2: Phase approach. Geophys. Prospect. 55 (2007) 465–475. [CrossRef] [Google Scholar]
  7. E. Beretta, M. De Hoop and L. Qiu, Lipschitz stability of an inverse boundary value problem for a Schrödinger type equation. SIAM J. Math. Anal. 45 (2013) (2) 679–699. [CrossRef] [Google Scholar]
  8. E. Bozdağ, J. Trampert and J. Tromp, Misfit functions for full waveform inversion based on instantaneous phase and envelope measurements. Geophys. J. Int. 85 (2011) 845–870. [Google Scholar]
  9. R. Brossier, S. Operto and J. Virieux, Robust elastic frequency-domain full-waveform inversion using the L1 norm. Geophys. Res. Lett. 36 (2009) 20310. [Google Scholar]
  10. R. Brossier, S. Operto and J. Virieux, Which data residual norm for robust elastic frequency-domain full waveform inversion?. Geophysics 75 (2010) R37–R46. [CrossRef] [Google Scholar]
  11. C. Bunks, F.M. Saleck, S. Zaleski and G. Chavent, Multiscale seismic waveform inversion. Geophysics 60 (1995) 1457–1473. [CrossRef] [Google Scholar]
  12. F. Cakoni and D.L. Colton, A Qualitative Approach to Inverse Scattering Theory. Springer, Berlin, Heidelberg (2014). [CrossRef] [Google Scholar]
  13. D. Carlson, W. Söllner, H. Tabti, E. Brox and M. Widmaier, Increased Resolution of Seismic Data from a Dual-sensor Streamer Cable, SEG Technical Program Expanded Abstracts 2007. Society of Exploration Geophysicists (2007) 994–998. [CrossRef] [Google Scholar]
  14. C.I. Cârstea, N. Honda and G. Nakamura, Uniqueness in the inverse boundary value problem for piecewise homogeneous anisotropic elasticity. Preprint ArXiv:1611.03930 (2016). [Google Scholar]
  15. G. Chavent, Identification of functional parameters in partial differential equations. Identification of parameters in distributed systems. In: Joint Automatic Control Conference (1974) 155–156. [Google Scholar]
  16. G. Chavent, Nonlinear Least Squares for Inverse Problems: Theoretical Foundations and Step-by-step Guide for Applications. Springer Science & Business Media, New York (2010). [Google Scholar]
  17. D. Colton and H. Haddar, An application of the reciprocity gap functional to inverse scattering theory. Inverse Probl. 21 (2005) 383–398. [Google Scholar]
  18. M. De Hoop, L. Qiu and O. Scherzer, Local analysis of inverse problems: Hölder stability and iterative reconstruction. Inverse Probl. 28 (2012) 045001. [Google Scholar]
  19. B. Engquist and A. Majda. Absorbing boundary conditions for numerical simulation of waves. Proc. Natl. Acad. Sci. 74 (1977) 1765–1766. [CrossRef] [Google Scholar]
  20. M. Ikehata, Reconstruction of the shape of the inclusion by boundary measurements. Commun. Part. Differ. Equ. 23 (1998) 1459–1474. [CrossRef] [Google Scholar]
  21. B.L.N. Kennett, M.S. Sambridge, P.R. Williamson, Subspace methods for large inverse problems with multiple parameter classes. Geophys. J. Int. 94 (1988) 237–247. [Google Scholar]
  22. M. Kern, Numerical Methods for Inverse Problems. John Wiley & Sons (2016). [CrossRef] [Google Scholar]
  23. P. Lailly, The seismic inverse problem as a sequence of before stack migrations. In: Conference on Inverse Scattering: Theory and Application, edited by J.B. Bednar. SIAM (1983) 206–220. [Google Scholar]
  24. J.L. Lions and S.K. Mitter, Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971). [CrossRef] [Google Scholar]
  25. Y. Lin, A. Abubakar and T.M. Habashy, Seismic full-waveform inversion using truncated wavelet representations. In: SEG Technical Program Expanded Abstracts 2012. Chapter 486 (2012) 1–6. [Google Scholar]
  26. I. Loris, H. Douma, G. Nolet, I. Daubechies and C. Regone, Nonlinear regularization techniques for seismic tomography. J. Comput. Phys. 229 (2010) 890–905. [Google Scholar]
  27. I. Loris, G. Nolet, I. Daubechies and F.A. Dahlen, Tomographic inversion using L1-norm regularization of wavelet coefficients. Geophys. J. Int. 170 (2007) 359–370. [Google Scholar]
  28. J. Nocedal and S. Wright, Numerical Optimization, 2nd edn. In: Springer Series in Operations Research (2006. [Google Scholar]
  29. G.S. Pan, R.A. Phinney and R.I. Odom, Full-waveform inversion of plane-wave seismograms in stratified acoustic media; theory and feasibility. Geophysics 53 (1988) 21–31. [CrossRef] [Google Scholar]
  30. R.-E. Plessix, A review of the adjoint-state method for computing the gradient of a functional with geophysical applications. Geophys. J. Int. 167 (2006) 495–503. [Google Scholar]
  31. R. Potthast, A survey on sampling and probe methods for inverse problems. Inverse Probl. 22 (2006) R1–R47. [Google Scholar]
  32. R.G. Pratt, Z.-M. Song, P. Williamson and M. Warner, Two-dimensional velocity models from wide-angle seismic data by wavefield inversion. Geophys. J. Int. 124 (1996) 323–340. [Google Scholar]
  33. R.G. Pratt and M.H. Worthington, Inverse theory applied to multi-source cross-hole tomography. Part 1: Acoustic wave-equation method. Geophys. Prospect. 38 (1990) 287–310. [CrossRef] [Google Scholar]
  34. G. Rønholt, J.E. Lie, O. Korsmo, B. Danielsen, S. Brandsberg-Dah, S. Brown, N. Chemingui, A. Valenciano Mavilio, D. Whitmore and R.D. Martinez, Broadband velocity model building and imaging using reflections, refractions and multiples from dual-sensor streamer data. In: 14th International Congress of the Brazilian Geophysical Society & EXPOGEF, Rio de Janeiro, Brazil, 3-6 August 2015. Brazilian Geophysical Society (2015) 1006–1009. [Google Scholar]
  35. J. Shi, M.V. de Hoop, E. Beretta, E. Francini and S. Vessella, Multi-parameter iterative reconstruction with the Neumann-to-Dirichlet map as the data. Submitted to Geophys. J. Int. (2017). [Google Scholar]
  36. S. Pyun, C. Shin and J.B. Bednar, Comparison of waveform inversion, part 3: Amplitude approach. Geophys. Prospect. 55 (2007) 477–485. [CrossRef] [Google Scholar]
  37. C. Shin, S. Pyun and J.B. Bednar, Comparison of waveform inversion, part 1: Conventional wavefield vs logarithmic wavefield. Geophys. Prospect. 55 (2007) 449–464. [CrossRef] [Google Scholar]
  38. A. Tarantola, Inversion of seismic reflection data in the acoustic approximation. Geophysics 49 (1984) 1259–1266. [CrossRef] [Google Scholar]
  39. A. Tarantola, Inversion of travel times and seismic waveforms. Seismic Tomography. Springer. Dordrecht (1987) 135–157. [CrossRef] [Google Scholar]
  40. R. Tenghamn, S. Vaage and C. Borresen, A Dual-sensor Towed Marine Streamer: Its Viable Implementation and Initial Results, SEG Technical Program Expanded Abstracts 2007. Society of Exploration Geophysicists (2007) 989–993. [CrossRef] [Google Scholar]
  41. N.D. Whitmore, A.A. Valenciano, W. Sollner and S. Lu, Imaging of primaries and multiples using a dual-sensor towed streamer, SEG Technical Program Expanded Abstracts 2010. Society of Exploration Geophysicists (2010) 3187–3192. [CrossRef] [Google Scholar]
  42. R.-S. Wu, J. Luo and B. Wu, Seismic envelope inversion and modulation signal model. Geophysics 79 (2014) WA13–WA24. [CrossRef] [Google Scholar]
  43. Y.O. Yuan and F.J. Simons, Multiscale adjoint waveform-difference tomography using wavelets. Geophysics 79 (2014) WA79–WA95. [CrossRef] [Google Scholar]
  44. Y.O. Yuan, F.J. Simons and E. Bozdağ, Multiscale adjoint waveform tomography for surface and body waves. Geophysics 80 (2015) R281–R302. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you