Free Access
Issue
ESAIM: M2AN
Volume 53, Number 5, September-October 2019
Page(s) 1507 - 1552
DOI https://doi.org/10.1051/m2an/2019016
Published online 06 August 2019
  1. R.J. Adler, The geometry of random fields. In: Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons Ltd., Chichester (1981). [Google Scholar]
  2. J.H. Adler and V. Nistor, Graded mesh approximation in weighted Sobolev spaces and elliptic equations in 2D. Math. Comput. 84 (2015) 2191–2220. [CrossRef] [Google Scholar]
  3. T. Apel, A.L. Lombardi and M. Winkler, Anisotropic mesh refinement in polyhedral domains: error estimates with data in L2 (Ω). ESAIM: M2AN 48 (2014) 1117–1145. [CrossRef] [EDP Sciences] [Google Scholar]
  4. T. Apel, J. Pfefferer and M. Winkler, Local mesh refinement for the discretization of Neumann boundary control problems on polyhedra. Math. Methods Appl. Sci. 39 (2016) 1206–1232. [CrossRef] [Google Scholar]
  5. I. Babuška, R. Bruce Kellogg and J. Pitkäranta, Direct and inverse error estimates for finite elements with mesh refinements. Numer. Math. 33 (1979) 447–471. [CrossRef] [MathSciNet] [Google Scholar]
  6. M. Bachmayr, A. Cohen, D. Dũng and C. Schwab, Fully discrete approximation of parametric and stochastic elliptic PDEs. SIAM J. Numer. Anal. 55 (2017) 2151–2186. [CrossRef] [Google Scholar]
  7. M. Bachmayr, A. Cohen, R. DeVore and G. Migliorati, Sparse polynomial approximation of parametric elliptic PDEs. part II: lognormal coefficients. ESAIM: M2AN 51 (2017) 341–363. [CrossRef] [EDP Sciences] [Google Scholar]
  8. M. Bachmayr, A. Cohen and G. Migliorati, Representations of Gaussian random fields and approximation of elliptic PDEs with lognormal coefficients. J. Fourier Anal. Appl. 24 (2018) 621–649. [CrossRef] [Google Scholar]
  9. L. Banjai, J.M. Melenk, R.H. Nochetto, E. Otarola, A.J. Salgado and C. Schwab, Tensor FEM for spectral fractional diffusion. Found. Comput. Math. DOI:10.1007/s10208-018-9402-3 (2018). [Google Scholar]
  10. V.I. Bogachev, Gaussian Measures. Vol. 62 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (1998). [CrossRef] [Google Scholar]
  11. J.H. Bramble, Multigrid methods. In: Vol. 294 of Pitman Research Notes in Mathematics Series. Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, NY (1993). [Google Scholar]
  12. J. Charrier, Strong and weak error estimates for elliptic partial differential equations with random coefficients. SIAM J. Numer. Anal. 50 (2012) 216–246. [CrossRef] [Google Scholar]
  13. P.G. Ciarlet, Linear and Nonlinear Functional Analysis With Applications. Society for Industrial and Applied Mathematics, Philadelphia, PA (2013). [Google Scholar]
  14. J. Dick, F.Y. Kuo and I.H. Sloan, High-dimensional integration: the quasi-Monte Carlo way. Acta Numer. 22 (2013) 133–288. [CrossRef] [Google Scholar]
  15. J. Dick, F.Y. Kuo, Q.T. Le Gia, D. Nuyens and C. Schwab, Higher order QMC Petrov-Galerkin discretization for affine parametric operator equations with random field inputs. SIAM J. Numer. Anal. 52 (2014) 2676–2702. [CrossRef] [Google Scholar]
  16. C.R. Dietrich and G.N. Newsam, Fast and exact simulation of stationary Gaussian processes through circulant embedding of the covariance matrix. SIAM J. Sci. Comput. 18 (1997) 1088–1107. [CrossRef] [MathSciNet] [Google Scholar]
  17. M.M. Dunlop, M.A. Girolami, A.M. Stuart and A.L. Teckentrup, How deep are deep Gaussian processes? J. Mach. Learn. Res. 19 (2018) 54. [Google Scholar]
  18. G.-A. Fuglstad, F. Lindgren, D. Simpson and H. Rue, Exploring a new class of non-stationary spatial Gaussian random fields with varying local anisotropy. Statist. Sinica 25 (2015) 115–133. [Google Scholar]
  19. R.N. Gantner, L. Herrmann and C. Schwab, Multilevel QMC with product weights for affine-parametric, elliptic PDEs, edited by J. Dick, F.Y. Kuo, H. Woz'niakowski. In: Contemporary Computational Mathematics – A Celebration of the 80th Birthday of Ian Sloan. Springer International Publishing, Cham (2018) 373–405. [CrossRef] [Google Scholar]
  20. R.N. Gantner, L. Herrmann and C. Schwab, Quasi-Monte Carlo integration for affine-parametric, elliptic PDEs: local supports and product weights. SIAM J. Numer. Anal. 56 (2018) 111–135. [CrossRef] [Google Scholar]
  21. F.D. Gaspoz and P. Morin, Convergence rates for adaptive finite elements. IMA J. Numer. Anal. 29 (2009) 917–936. [CrossRef] [Google Scholar]
  22. A. George, Nested dissection of a regular finite element mesh. SIAM J. Numer. Anal. 10 (1973) 345–363. [CrossRef] [Google Scholar]
  23. C.J. Gittelson, Representation of Gaussian fields in series with independent coefficients. IMA J. Numer. Anal. 32 (2012) 294–319. [CrossRef] [Google Scholar]
  24. G.H. Golub and C.F. Van Loan, Matrix computations, 3rd edition. In: Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD (1996). [Google Scholar]
  25. I.G. Graham, F.Y. Kuo, D. Nuyens, R. Scheichl and I.H. Sloan, Quasi-Monte Carlo methods for elliptic PDEs with random coefficients and applications. J. Comput. Phys. 230 (2011) 3668–3694. [CrossRef] [Google Scholar]
  26. I.G. Graham, F.Y. Kuo, J.A. Nichols, R. Scheichl, C. Schwab and I.H. Sloan, Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients. Numer. Math. 131 (2015) 329–368. [CrossRef] [MathSciNet] [Google Scholar]
  27. I.G. Graham, F.Y. Kuo, D. Nuyens, R. Scheichl and I.H. Sloan, Analysis of circulant embedding methods for sampling stationary random fields. SIAM J. Numer. Anal. 56 (2018) 1871–1895. [CrossRef] [Google Scholar]
  28. I.G. Graham, F.Y. Kuo, D. Nuyens, R. Scheichl and I.H. Sloan, Circulant embedding with QMC: analysis for elliptic PDE with lognormal coefficients. Numer. Math. 140 (2018) 479–511. [CrossRef] [Google Scholar]
  29. L. Herrmann, Strong convergence analysis of iterative solvers for random operator equations. Technical Report 2017-35, Seminar for Applied Mathematics, ETH Zürich (2017). [Google Scholar]
  30. L. Herrmann and C. Schwab, QMC algorithms with product weights for lognormal-parametric, elliptic PDEs. In: Monte Carlo and Quasi-Monte Carlo Methods: MCQMC 2016, Stanford, CA, August 14–19. Vol. 241 of Springer Proc. Math. Stat. Springer, Cham (2018) 313–330. [Google Scholar]
  31. L. Herrmann and C. Schwab, QMC integration for lognormal-parametric, elliptic PDEs: local supports and product weights. Numer. Math. 141 (2019) 63–102. [CrossRef] [Google Scholar]
  32. L. Herrmann, A. Lang and C. Schwab, Numerical analysis of lognormal diffusions on the sphere. Stochastics Partial Differ. Equ.: Anal. Comput. 6 (2018) 1–44. [Google Scholar]
  33. Y. Kazashi, Quasi-Monte Carlo integration with product weights for elliptic PDEs with log-normal coefficients. IMA J. Numer. Anal. 39 (2019) 1563–1593. [CrossRef] [Google Scholar]
  34. F.Y. Kuo, I.H. Sloan, G.W. Wasilkowski and B.J. Waterhouse, Randomly shifted lattice rules with the optimal rate of convergence for unbounded integrands. J. Complexity 26 (2010) 135–160. [CrossRef] [Google Scholar]
  35. F.Y. Kuo, C. Schwab and I.H. Sloan, Multi-level quasi-Monte Carlo finite element methods for a class of elliptic PDEs with random coefficients. Found. Comput. Math. 15 (2015) 411–449. [CrossRef] [Google Scholar]
  36. F.Y. Kuo, R. Scheichl, C. Schwab, I.H. Sloan and E. Ullmann, Multilevel quasi-Monte Carlo methods for lognormal diffusion problems. Math. Comput. 86 (2017) 2827–2860. [CrossRef] [Google Scholar]
  37. H. Li, An anisotropic finite element method on polyhedral domains: interpolation error analysis. Math. Comput. 87 (2018) 1567–1600. [CrossRef] [Google Scholar]
  38. F. Lindgren, H. Rue and J. Lindström, An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. J. R. Stat. Soc. Ser. B Stat. Methodol. 73 (2011) 423–498. With discussion and a reply by the authors. [CrossRef] [Google Scholar]
  39. B. Matérn, Spatial variation, 2nd edition. With a Swedish summary. Vol. 36 of Lecture Notes in Statistics. Springer-Verlag, Berlin (1986). [CrossRef] [Google Scholar]
  40. V. Mazya and J. Rossmann, Elliptic equations in polyhedral domains. Vol. 162 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2010). [CrossRef] [Google Scholar]
  41. J.A. Nichols and F.Y. Kuo, Fast CBC construction of randomly shifted lattice rules achieving # convergence for unbounded integrands over # in weighted spaces with POD weights. J. Complexity 30 (2014) 444–468. [CrossRef] [Google Scholar]
  42. D. Nuyens and R. Cools, Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces. Math. Comput. 75 (2006) 903–920. [CrossRef] [Google Scholar]
  43. D. Nuyens and R. Cools, Fast component-by-component construction of rank-1 lattice rules with a non-prime number of points. J. Complexity 22 (2006) 4–28. [CrossRef] [Google Scholar]
  44. N. Rekatsinas and R. Stevenson, A quadratic finite element wavelet Riesz basis. Int. J. Wavelets Multiresolut. Inf. Process. 16 (2018) 1850033. [CrossRef] [Google Scholar]
  45. H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, 2nd edition. Johann Ambrosius Barth, Heidelberg (1995). [Google Scholar]
  46. T. von Petersdorff and C. Schwab, Wavelet approximations for first kind boundary integral equations on polygons. Numer. Math. 74 (1996) 479–516. [CrossRef] [Google Scholar]
  47. P. Whittle, On stationary processes in the plane. Biometrika 41 (1954) 434–449. [CrossRef] [Google Scholar]
  48. P. Whittle, Stochastic processes in several dimensions. Bull. Inst. Internat. Statist. 40 (1963) 974–994. [Google Scholar]
  49. J. Xu, Iterative methods by space decomposition and subspace correction. SIAM Rev. 34 (1992) 581–613. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you