Free Access
Volume 53, Number 5, September-October 2019
Page(s) 1629 - 1644
Published online 12 August 2019
  1. W. Bangerth, R. Hartmann and G. Kanschat, deal.II – a general purpose object oriented finite element library. ACM Trans. Math. Softw. 33 (2007) 24/1–24/27. [CrossRef] [Google Scholar]
  2. C. Bardos, A.Y. Leroux and J.C. Nedelec, First order quasilinear equations with boundary conditions. Commun. Part. Diff. Eq. 4 (Jan 1979) 1017–1034. [CrossRef] [MathSciNet] [Google Scholar]
  3. D. Bates, J. Hauenstein, A. Sommese and C. Wampler, Numerically Solving Polynomial Systems with Bertini (Software, Environments and Tools). SIAM, Philadelphia, Pennsylvania (2013). [Google Scholar]
  4. A. Ern and J.L. Guermond, Theory and Practice of Finite Elements. Applied Mathematical Sciences. Springer, New York (2004). [CrossRef] [Google Scholar]
  5. L.C. Evans, Partial Differential Equations, in Vol. 19 of Graduate Studies in Mathematics. Providence, Rhode Island (1998). [Google Scholar]
  6. J.-L. Guermond and M. Nazarov, A maximum-principle preserving # finite element method for scalar conservation equations. Comput. Methods Appl. Mech. Engrg. 272 (2014) 198–213. [CrossRef] [Google Scholar]
  7. J.-L. Guermond and B. Popov, Invariant domains and first-order continuous finite element approximation for hyperbolic systems. SIAM J. Numer. Anal. 54 (2016) 2466–2489. [CrossRef] [Google Scholar]
  8. J.-L. Guermond, R. Pasquetti and B. Popov, Entropy viscosity method for nonlinear conservation laws. J. Comput. Phys. 230 (2011) 4248–4267. [CrossRef] [Google Scholar]
  9. J.-L. Guermond, M. Nazarov, B. Popov and Y. Yang, A second-order maximum principle preserving Lagrange finite element technique for nonlinear scalar conservation equations. SIAM J. Numer. Anal. 52 (2014) 2163–2182. [CrossRef] [Google Scholar]
  10. W. Hao, J. Hauenstein, B. Hu, Y. Liu, A. Sommese and Y.-T. Zhang, Bifurcation for a free boundary problem modeling the growth of a tumor with a necrotic core. Nonlinear Anal. Real World App. 13 (2012) 694–709. [CrossRef] [Google Scholar]
  11. W. Hao, J. Hauenstein, B. Hu, T. McCoy and A. Sommese, Computing steady-state solutions for a free boundary problem modeling tumor growth by stokes equation. J. Comput. Appl. Math. 237 (2013) 326–334. [CrossRef] [Google Scholar]
  12. W. Hao, J. Hauenstein, C.-W. Shu, A. Sommese, Z. Xu and Y.-T. Zhang, A homotopy method based on weno schemes for solving steady state problems of hyperbolic conservation laws. J. Comput. Phys. 250 (2013) 332–346. [Google Scholar]
  13. W. Hao, R. Nepomechie and A. Sommese, Completeness of solutions of bethe’s equations. Phys. Rev. E 88 (2013) 052113. [Google Scholar]
  14. W. Hao, B. Hu and A. Sommese, Numerical algebraic geometry and differential equations. In: Future Vision and Trends on Shapes, Geometry and Algebra. Springer, London (2014) 39–53. [Google Scholar]
  15. J. Hicken and D. Zingg, Globalization strategies for inexact-newton solvers. In: 19th AIAA Computational Fluid Dynamics (2009) 4139. [Google Scholar]
  16. J. Hicken, H. Buckley, M. Osusky and D. Zingg, Dissipation-based continuation: a globalization for inexact-newton solvers. In: 20th AIAA Computational Fluid Dynamics Conference (2011) 3237. [Google Scholar]
  17. E. Hopf, The partial differential equation #. Commun. Pure App. Math. 3 (1950) 201–230. [CrossRef] [MathSciNet] [Google Scholar]
  18. A.F. Izmailov and M.V. Solodov, Newton-Type Methods for Optimization and Variational Problems. Springer Series in Operations Research and Financial Engineering. Springer International Publishing, New York (2014). [CrossRef] [Google Scholar]
  19. G. Kreiss and H.-O. Kreiss, Convergence to steady state of solutions of Burgers’ equation. Appl. Numer. Math. 2 (1986) 161–179. [CrossRef] [Google Scholar]
  20. P.D. Lax, Weak solutions of nonlinear hyperbolic equations and their numerical computation. Comm. Pure Appl. Math. 7 (1954) 159–193. [CrossRef] [MathSciNet] [Google Scholar]
  21. V.B. Leer, Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme. J. Comput. Phys. 14 (1974) 361–370. [NASA ADS] [CrossRef] [Google Scholar]
  22. H. Nessyahu and E. Tadmor, Non-oscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. (1990) 408–463. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  23. M.D. Salas, S. Abarbanel and D. Gottlieb, Multiple steady states for characteristic initial value problems. Appl. Numer. Math. 2 (1986) 193–210. [CrossRef] [Google Scholar]
  24. A. Sommese and C. Wampler, The Numerical Solution of Systems of Polynomials Arising in Engineering and Science. In Vol. 99. World Scientific, Singapore. (2005). [Google Scholar]
  25. I.S. Strub and A.M. Bayen, Weak formulation of boundary conditions for scalar conservation laws: an application to highway traffic modelling. Int. J. Robust Nonlin. Control 16 (2006) 733–748. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you