Free Access
Volume 53, Number 5, September-October 2019
Page(s) 1553 - 1576
Published online 06 August 2019
  1. I. Aavatsmark, An introduction to multipoint flux approximations for quadrilateral grids. Comput. Geosci. 6 (2002) 405–432. [CrossRef] [MathSciNet] [Google Scholar]
  2. I. Aavatsmark, G.T. Eigestad, R.A. Klausen, M.F. Wheeler and I. Yotov, Convergence of a symmetric mpfa method on quadrilateral grids. Comput. Geosci. 11 (2007) 333–345. [CrossRef] [Google Scholar]
  3. G. Acosta and R.G. Durán, The maximum angle condition for mixed and nonconforming elements: application to the stokes equations. SIAM J. Numer. Anal. 37 (1999) 18–36. [CrossRef] [MathSciNet] [Google Scholar]
  4. S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. Commun. Pure Appl. Math. 12 (1959) 623–727. [CrossRef] [MathSciNet] [Google Scholar]
  5. T. Arbogast, M.F. Wheeler and I. Yotov, Mixed finite elements for elliptic problems with tensor coefficients as cell-centered finite differences. SIAM J. Numer. Anal. 34 (1997) 828–852. [CrossRef] [MathSciNet] [Google Scholar]
  6. I. Babuška, Error-bounds for finite element method. Numer. Math. 16 (1971) 322–333. [CrossRef] [MathSciNet] [Google Scholar]
  7. J. Baranger, J.-F. Maitre and F. Oudin, Connection between finite volume and mixed finite element methods. RAIRO Modél. Math. Anal. Numér. 30 (1996) 445–465. [Google Scholar]
  8. S. Borel, F. Dubois, C. Le Potier and M.M. Tekitek, Boundary conditions for Petrov-Galerkin finite volumes. In: Finite Volumes for Complex Applications IV (2005) 305–314. [Google Scholar]
  9. F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers. ESAIM: M2AN 8 (1974) 129–151. [EDP Sciences] [Google Scholar]
  10. G. Chavent, A. Younès and P. Ackerer, On the finite volume reformulation of the mixed finite element method for elliptic and parabolic PDE on triangles. Comput. Methods Appl. Mech. Eng. 192 (2003) 655–682. [CrossRef] [MathSciNet] [Google Scholar]
  11. P.-G. Ciarlet, The finite element method for elliptic problems. Studies in Mathematics and Applications. North Holland, Amsterdam 4 (1978). [Google Scholar]
  12. Y. Coudière, J.-P. Vila and P. Villedieu, Convergence rate of a finite volume scheme for a two-dimensional convection-diffusion problem. ESAIM: M2AN 33 (1999) 493–516. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  13. K. Domelevo and P. Omnes, A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids. ESAIM: M2AN 39 (2005) 1203–1249. [CrossRef] [EDP Sciences] [Google Scholar]
  14. F. Dubois, Finite volumes and mixed Petrov-Galerkin finite elements: the unidimensional problem. Numer. Methods Partial Differ. Equ. 16 (2000) 335–360. [CrossRef] [Google Scholar]
  15. F. Dubois, Petrov-Galerkin finite volumes. In: Finite Volumes for Complex Applications, III (Porquerolles, 2002). Elsevier Science & Technology (2002) 203–210. [Google Scholar]
  16. F. Dubois, Dual Raviart–Thomas mixed finite elements. Preprint arXiv:1012.1691 (2010). [Google Scholar]
  17. R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, in . Handb. Numer. Anal. VII. North-Holland, Amsterdam (2000). [Google Scholar]
  18. I. Faille, A control volume method to solve an elliptic equation on a two-dimensional irregular mesh. Comput. Methods Appl. Mech. Eng. 100 (1992) 275–290. [CrossRef] [MathSciNet] [Google Scholar]
  19. I. Faille, T. Gallouët and R. Herbin, Des mathématiciens découvrent les volumes finis. Matapli 28 (1991) 37–48. [Google Scholar]
  20. B. Fraeijs de Veubeke, Displacement and equilibrium models in the finite element method. In: Symposium Numerical Methods in Elasticity, edited by J. Wiley. Holister, University College of Swansea (1965). [Google Scholar]
  21. S. Godounov, A. Zabrodin, M. Ivanov, A. Kraiko and G. Prokopov, Résolution numérique des problèmes multidimensionnels de la dynamique des gaz. “Mir’”, Moscow. Translated from the Russian by Valéri Platonov (1979). [Google Scholar]
  22. R. Herbin, An error estimate for a finite volume scheme for a diffusion-convection problem on a triangular mesh. Numer. Methods Partial Differ. Equ. 11 (1995) 165–173. [CrossRef] [MathSciNet] [Google Scholar]
  23. F. Hermeline, Une méthode de volumes finis pour les équations elliptiques du second ordre. C.R. Acad. Sci. Paris Sér. I Math. 326 (1998) 1433–1436. [CrossRef] [Google Scholar]
  24. D.S. Kershaw, Differencing of the diffusion equation in lagrangian hydrodynamic codes. J. Comput. Phys. 39 (1981) 375–395. [CrossRef] [Google Scholar]
  25. O.A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow. Mathematics and Its Applications, 2nd edition (Revised Second ed.). Gordon and Breach, New York–London–Paris–Montreux–Tokyo–Melbourne (1969) XVIII+224. [Google Scholar]
  26. W.-F. Noh, CEL: a time-dependent, two-space-dimensional, coupled Euler-Lagrange code. In: Advances in Research and Applications. Academic Press, New York and London (1964). [Google Scholar]
  27. S.V. Patankar, Numerical Heat transfer and fluid flowSeries in Computational Methods in Mechanics and Thermal. CRC Press, Boca Raton (1980). [Google Scholar]
  28. L.E. Payne and H.F. Weinberger, An optimal Poincaré inequality for convex domains. Arch. Ration. Mech. Anal. 5 (1960) 286–292. [CrossRef] [MathSciNet] [Google Scholar]
  29. G.J. Pert, Physical constraints in numerical calculations of diffusion. J. Comput. Phys. 42 (1981) 20–52. [CrossRef] [Google Scholar]
  30. G.I. Petrov, Application of Galerkin’s method to the problem of stability of flow of a viscous fluid. J. Appl. Math. Mech. 4 (1940) 3–12. [Google Scholar]
  31. P.-A. Raviart and J.-M. Thomas, A mixed finite element method for 2nd order elliptic problems. Mathematical Aspects of Finite Element Methods. In Vol. 606 of Lecture Notes in Math. (1977) 292–315. [CrossRef] [Google Scholar]
  32. P.-A. Raviart and J.-M. Thomas, Introduction à l’analyse numérique des équations aux dérivées partielles. Mathématiques Appliquées pour la Ma trise. Masson, Paris (1983). [Google Scholar]
  33. A. Rivas, Be03, programme de calcul tridimensionnel de la transmission de chaleur et de l’ablation. Rapport Aerospatiale Les Mureaux (1982). [Google Scholar]
  34. J.E. Roberts and J.-M. Thomas, Mixed and Hybrid Methods. Elsevier Science Publishers, Amsterdam (1991). [Google Scholar]
  35. J.-M. Thomas and D. Trujillo, Finite volume methods for elliptic problems: Convergence on unstructured meshes. Numer. Methods Mech. (Concepción, 1995) 371 (1997) 163–174. [Google Scholar]
  36. J.-M. Thomas and D. Trujillo, Mixed finite volume methods. Fourth World Congress on Computational Mechanics (Buenos Aires, 1998). Int. J. Numer. Methods Eng. 46 (1999) 1351–1366. [CrossRef] [Google Scholar]
  37. M. Vohralk, Equivalence between lowest-order mixed finite element and multi-point finite volume methods on simplicial meshes. ESAIM: M2AN 40 (2006) 367–391. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  38. M. Vohralk and B.I. Wohlmuth, Mixed finite element methods: implementation with one unknown per element, local flux expressions, positivity, polygonal meshes, and relations to other methods. Math. Models Methods Appl. Sci. 23 (2013) 803–838. [CrossRef] [Google Scholar]
  39. G. Voronoi, Nouvelles applications des paramètres continus à la théorie des formes quadratiques. J. Reine Angew. Math. 133 (1908) 97–178. [CrossRef] [Google Scholar]
  40. M.F. Wheeler and I. Yotov, A multipoint flux mixed finite element method. SIAM J. Numer. Anal. 44 (2006) 2082–2106. [CrossRef] [Google Scholar]
  41. A. Younès, P. Ackerer and G. Chavent, From mixed finite elements to finite volumes for elliptic PDEs in two and three dimensions. Int. J. Numer. Methods Eng. 59 (2004) 365–388. [CrossRef] [MathSciNet] [Google Scholar]
  42. A. Younès, R. Mosé, P. Ackerer and G. Chavent, A new formulation of the mixed finite element method for solving elliptic and parabolic PDE with triangular elements. J. Comput. Phys. 149 (1999) 148–167. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you