Free Access
Volume 53, Number 5, September-October 2019
Page(s) 1577 - 1606
Published online 06 August 2019
  1. E. Aulisa and D.S. Gilliam, A Practical Guide to Geometric Regulation for Distributed Parameter Systems. Chapman and Hall/CRC, Boca Raton (2015). [CrossRef] [Google Scholar]
  2. E. Aulisa and D.S. Gilliam, Regulation of a controlled Burgers’ equation: Tracking and disturbance rejection for general time dependent signals. In: Proceedings American Control Conference (2013) 1290–1295. [Google Scholar]
  3. E. Aulisa and D.S. Gilliam, A numerical algorithm for set-Point regulation of non-linear parabolic control systems. Int. J. Numer. Anal. Model. 11 (2014) 54–85. [Google Scholar]
  4. E. Aulisa, J.A. Burns and D.S. Gilliam, An example of thermal regulation of a two dimensional non-isothermal incompressible flow. In: Proceedings 51st IEEE conference on Decision and Control (2012) 1578–1583. [Google Scholar]
  5. E. Aulisa, J.A. Burns and D.S. Gilliam, Velocity control of a counter-flow heat exchanger. IFAC-PapersOnLine 49 (2016) 104–109. [CrossRef] [Google Scholar]
  6. H.T. Banks, W. Fang and R.C. Smith, Active noise control: Piezoceramic actuators in fluid/structure interaction models. Decision and Control, Proceedings of the 30th IEEE Conference. IEEE, Los Alamitos, CA (1991) 2328–2333. [Google Scholar]
  7. J. Borggaard, J.A. Burns, A. Surana and L. Zietsman, Control, estimation and optimization of energy efficient buildings. In: Proceedings of 2009 American Control Conference Hyatt Regency, Riverfront, St. Louis, MO (2009) 837–841. [Google Scholar]
  8. C.I. Byrnes, D.S. Gilliam, I.G. Laukó and V.I. Shubov, Output regulation for linear distributed parameter systems. IEEE Trans. Auto. Control 45 (2000) 2236–2252. [CrossRef] [Google Scholar]
  9. E.J. Davison, The robust control of a servomechanism problem for linear time-invariant multivariable systems. IEEE Trans. Auto. Control AC-21 (1976) 25–34. [CrossRef] [Google Scholar]
  10. N. Dunford and J. Schwartz, Linear Operators. Interscience, NY Vols. I, II, III (1963). [Google Scholar]
  11. K.J. Engel and R. Nagel, One-parameter semigroups for linear evolution equations. In: Volume 194 of Graduate Texts in Mathematics. Springer-Verlag, New York (2000). [Google Scholar]
  12. B.A. Francis, The linear multivariable regulator problem. SIAM J. Control. Optim. 14 (1977) 486–505. [CrossRef] [Google Scholar]
  13. B.A. Francis and W.M. Wonham, The internal model principle of control theory. Automatica 12 (1976) 457–465. [CrossRef] [Google Scholar]
  14. M. Haase, The Functional Calculus for Sectorial Operators. Springer Sciences & Business Media, Berlin, Heidelberg (2006). [CrossRef] [Google Scholar]
  15. D. Henry, Geometric theory of semilinear parabolic equations. In: Volume 840 of Lecture Notes in Mathematics, Springer-Verlag, Berlin (1981). [CrossRef] [Google Scholar]
  16. K. Mikkola, Infinite dimensional linear systems, optimal control and algebraic Riccati equations. Doctoral dissertation, Helsinki University of Technology (2002). [Google Scholar]
  17. T. Kato, Perturbation Theory of Linear Operators. Springer-Verlag, Berlin, Heidelberg (1966). [Google Scholar]
  18. T.W. Pathiranage, Analysis of the Error in an Iterative Algorithm for Solution of the Regulator Equations for Linear Distributed Parameter Control Systems. Ph.D. thesis, Texas Tech University (2016). [Google Scholar]
  19. S.A. Pohjolainen, Robust multivariable PI-controller for infinite Dimensional Systems. IEEE Trans. Auto. Control AC-27 (1982) 17–30. [CrossRef] [Google Scholar]
  20. S.A. Pohjolainen, On the asymptotic regulation problem for distributed parameter systems. In: Proc. Third Symposium on Control of Distributed Parameter Systems, Toulouse, France (1982). [Google Scholar]
  21. V. Natarajan, D.S. Gilliam and G. Weiss, The state feedback regulator problem for regular linear systems. IEEE Trans. Automatic Control 59 (2014) 2708–2723. [CrossRef] [Google Scholar]
  22. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York (1983). [CrossRef] [Google Scholar]
  23. P. Holmes, A nonlinear oscillator with strange attractors. Phil. Trans. R. Soc. London Ser. A Math. Phys. Sci. 292 (1979) 419–448. [CrossRef] [Google Scholar]
  24. L. Paunonen, Robustness of stability of C0-semigroups. Master’s thesis, Tampere University of Technology (2007). [Google Scholar]
  25. J.M. Schumacher, Finite-dimensional regulators for a class of infinite dimensional systems. Syst. Control Lett. 3 (1983) 7–12. [CrossRef] [Google Scholar]
  26. J.M. Schumacher, Dynamic Feedback in Finite - and Infinite-Dimensional Linear Systems, Mathematical Centre Tracts No. 143. Mathematical Centre, Amsterdam (1981). [Google Scholar]
  27. O.J. Staffans, Well-posed Linear Systems. Cambridge University Press, Cambridge (2005). [CrossRef] [Google Scholar]
  28. W.M. Wonham, Linear Multivariable Control: A Geometric Approach, 2nd edn. Springer Verlag, New York (1979). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you