Free Access
Issue
ESAIM: M2AN
Volume 53, Number 5, September-October 2019
Page(s) 1667 - 1694
DOI https://doi.org/10.1051/m2an/2019030
Published online 13 September 2019
  1. S.K. Acharya and A. Patel, Primal hybrid method for parabolic problems. Appl. Numer. Math. 108 (2016) 102–115. [Google Scholar]
  2. F. Ballarin, A. Manzoni, A. Quarteroni and G. Rozza, Supremizer stabilization of POD–Galerkin approximation of parametrized steady incompressible Navier-Stokes equations. Int. J. Numer. Methods Eng. 102 (2015) 1136–1161. [Google Scholar]
  3. R. Becker, P. Hansbo and R. Stenberg, A finite element method for domain decomposition with non-matching grids. ESAIM: M2AN 37 (2003) 209–225. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  4. F.B. Belgacem, The mortar finite element method with Lagrange multipliers. Numer. Math. 84 (1999) 173–197. [Google Scholar]
  5. F.B. Belgacem, L.K. Chilton and P. Seshaiyer, The hp-mortar finite-element method for the mixed elasticity and stokes problems. Comput. Math. App. 46 (2003) 35–55. [Google Scholar]
  6. C. Bernardi, A new nonconforming approach to domain decomposition: the mortar element method. Nonlinear Partial Equ. App (1989). [Google Scholar]
  7. C. Bernardi, Y. Maday and F. Rapetti, Basics and some applications of the mortar element method. GAMM-Mitteilungen 28 (2005) 97–123. [CrossRef] [Google Scholar]
  8. L. Bertagna, S. Deparis, L. Formaggia, D. Forti and A. Veneziani, The LifeV library: engineering mathematics beyond the proof of concept. Preprint arXiv:1710.06596 (2017). [Google Scholar]
  9. D. Boffi, F. Brezzi and M. Fortin. Mixed Finite Element Methods and Applications, Springer, Berlin 44 (2013). [CrossRef] [Google Scholar]
  10. Z. Bontinck, J. Corno, S. Schöps and H. De Gersem, Isogeometric analysis and harmonic stator–rotor coupling for simulating electric machines. Comput. Methods Appl. Mech. Eng. 334 (2018) 40–55. [Google Scholar]
  11. D. Braess, W. Dahmen and C. Wieners, A multigrid algorithm for the mortar finite element method. SIAM J. Numer. Anal. 37 (1999) 48–69. [Google Scholar]
  12. F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers. Rev. Fr. Autom. Inform. Rech. Opér., Anal. Numér. 8 (1974) 129–151. [Google Scholar]
  13. F. Brezzi and K.-J. Bathe, A discourse on the stability conditions for mixed finite element formulations. Comput. Methods Appl. Mech. Eng. 82 (1990) 27–57. [Google Scholar]
  14. F. Brezzi and D. Marini, Error estimates for the three-field formulation with bubble stabilization. Math. Comput. 70 (2001) 911–934. [Google Scholar]
  15. F. Brezzi and L.D. Marini, A three-field domain decomposition method. Contemp. Math. 157 (1994) 27–34. [CrossRef] [Google Scholar]
  16. E. Brivadis, A. Buffa, B. Wohlmuth and L. Wunderlich, Isogeometric mortar methods. Comput. Methods Appl. Mechan. Eng. 284 (2015) 292–319. [CrossRef] [Google Scholar]
  17. A. Buffa, C. De Falco and G. Sangalli, Isogeometric analysis: stable elements for the 2D Stokes equation. Int. J. Numer. Methods Fluids 65 (2011) 1407–1422. [Google Scholar]
  18. J. Céa, Approximation variationnelle des problèmes aux limites. Ann. Inst. Fourier (Grenoble) 14 (1964) 345–444. [CrossRef] [MathSciNet] [Google Scholar]
  19. P.G. Ciarlet, The Finite Element Method for Elliptic Problems. SIAM, Philadelphia (2002). [CrossRef] [Google Scholar]
  20. J. Cottrell, T. Hughes and A. Reali, Studies of refinement and continuity in isogeometric structural analysis. Comput. Methods Appl. Mech. Eng. 196 (2007) 4160–4183. [Google Scholar]
  21. J.A. Cottrell, T.J. Hughes and Y. Bazilevs, Isogeometric Analysis: Toward Integration of CAD and FEA. John Wiley & Sons, Hoboken, NJ (2009). [CrossRef] [Google Scholar]
  22. C. De Boor, On calculating with B-splines. J. Approx. Theor. 6 (1972) 50–62. [CrossRef] [Google Scholar]
  23. S. Deparis, M. Discacciati and A. Quarteroni, A domain decomposition framework for fluid-structure interaction problems. Comput. Fluid Dyn. 2006 (2004) 41–58. [Google Scholar]
  24. S. Deparis, D. Forti and A. Quarteroni, A rescaled localized radial basis function interpolation on non-cartesian and nonconforming grids. SIAM J. Sci. Comput. 36 (2014) A2745–A2762. [Google Scholar]
  25. S. Deparis, D. Forti, P. Gervasio and A. Quarteroni, INTERNODES: an accurate interpolation-based method for coupling the Galerkin solutions of PDEs on subdomains featuring non-conforming interfaces. Comput. Fluids 141 (2016) 22–41. [Google Scholar]
  26. A. Ehrl, A. Popp, V. Gravemeier and W. Wall, A dual mortar approach for mesh tying within a variational multiscale method for incompressible flow. Int. J. Numer. Methods Fluids 76 (2014) 1–27. [Google Scholar]
  27. D. Forti, Parallel algorithms for the solution of large-scale fluid-structure interaction problems in hemodynamics. Ph.D. thesis, EPFL (2016). [Google Scholar]
  28. V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms. Springer Science & Business Media, Berlin 5 (2012). [Google Scholar]
  29. C. Hesch, A. Gil, A.A. Carreño, J. Bonet and P. Betsch, A mortar approach for fluid–structure interaction problems: immersed strategies for deformable and rigid bodies. Comput. Methods Appl. Mech. Eng. 278 (2014) 853–882. [Google Scholar]
  30. P. Hood and C. Taylor, Navier-Stokes equations using mixed interpolation. Finite Elem. Methods Flow Prob. (1974) 121–132. [Google Scholar]
  31. T.J. Hughes, J.A. Cottrell and Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194 (2005) 4135–4195. [Google Scholar]
  32. M. Israeli, L. Vozovoi and A. Averbuch, Domain decomposition methods for solving parabolic PDEs on multiprocessors. Appl. Numer. Math. 12 (1993) 193–212. [Google Scholar]
  33. T. Klöppel, A. Popp, U. Küttler and W.A. Wall, Fluid-structure interaction for non-conforming interfaces based on a dual mortar formulation. Comput. Methods Appl. Mech. Eng. 200 (2011) 3111–3126. [Google Scholar]
  34. A. Popp and W. Wall, Dual mortar methods for computational contact mechanics–overview and recent developments. GAMM-Mitteilungen 37 (2014) 66–84. [CrossRef] [Google Scholar]
  35. M.A. Puso, A 3D mortar method for solid mechanics. Int. J. Numer. Methods Eng. 59 (2004) 315–336. [Google Scholar]
  36. M.A. Puso and T.A. Laursen, A mortar segment-to-segment contact method for large deformation solid mechanics. Comput. Methods Appl. Mech. Eng. 193 (2004) 601–629. [Google Scholar]
  37. A. Quarteroni, Numerical Models for Differential Problems. Springer-Verlag 8 (2014). [Google Scholar]
  38. A. Quarteroni and A. Valli, Domain decomposition methods for partial differential equations. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (1999). [Google Scholar]
  39. A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations. In Vol. 23 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin Heidelberg (1994). [CrossRef] [Google Scholar]
  40. P.-A. Raviart and J. Thomas, Primal hybrid finite element methods for 2nd order elliptic equations. Math. Comput. 31 (1977) 391–413. [Google Scholar]
  41. A. Ruhe, Numerical aspects of Gram-Schmidt orthogonalization of vectors. Linear Algebra App. 52 (1983) 591–601. [CrossRef] [Google Scholar]
  42. S. Salsa, Partial Differential Equations in action: from modelling to theory. In Vol. 99. Springer, Berlin (2016). [Google Scholar]
  43. P. Seshaiyer, Stability and convergence of nonconforming hp finite-element methods. Comput. Math. App. 46 (2003) 165–182. [Google Scholar]
  44. P. Seshaiyer and M. Suri, Convergence results for non-conforming hp methods: The mortar finite element method. Contemp. Math. 218 (1998) 453–459. [CrossRef] [Google Scholar]
  45. A. Toselli and O.B. Widlund, Domain decomposition methods: algorithms and theory. In Vol. 34 of Springer Series in Computational Mathematics. Springer, Berlin (2005). [CrossRef] [Google Scholar]
  46. R. Vázquez, A new design for the implementation of isogeometric analysis in Octave and Matlab: GeoPDEs 3.0. Comput. Math. App. 72 (2016) 523–554. [Google Scholar]
  47. B.I. Wohlmuth, A mortar finite element method using dual spaces for the Lagrange multiplier. SIAM J. Numer. Anal. 38 (2000) 989–1012. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you