Free Access
Volume 53, Number 5, September-October 2019
Page(s) 1741 - 1762
Published online 26 September 2019
  1. Y. Achdou and O. Pironneau, Computational methods for option pricing. In Vol. 30 of Frontiers in Applied Mathematics. SIAM, Philadelphia, PA (2005). [Google Scholar]
  2. A.F. Bastani, Z. Ahmadi and D. Damircheli, A radial basis collocation method for pricing American options under regime-switching jump-diffusion models. Appl. Numer. Math. 65 (2013) 79–90. [CrossRef] [Google Scholar]
  3. X. Chen, H. Cheng and J. Chadam, Nonconvexity of the optimal exercise boundary for an American put option on a dividend-paying asset. Math. Finance 23 (2013) 169–185. [CrossRef] [Google Scholar]
  4. R. Cont and E. Voltchkova, A finite difference scheme for option pricing in jump diffusion and exponential Lévy models. SIAM J. Numer. Anal. 43 (2005) 1596–1626. [CrossRef] [MathSciNet] [Google Scholar]
  5. M. Costabile, A. Leccadito, I. Massabó and E. Russo, Option pricing under regime-switching jump-diffusion models. J. Comput. Appl. Math. 256 (2014) 152–167. [CrossRef] [Google Scholar]
  6. E. Derman and I. Kani, Riding on a smile. Risk 7 (1994) 32–39. [Google Scholar]
  7. B. Dupire, Pricing with a smile. Risk 7 (1994) 18–20. [Google Scholar]
  8. R.J. Elliott, L. Aggoun and J.B. Moore, Hidden Markov Models: Estimation and Control. Springer-Verlag, New York, NY (1995). [Google Scholar]
  9. S.L. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Fin. Stud. 6 (1993) 327–343. [CrossRef] [Google Scholar]
  10. S. Ikonen and J. Toivanen, Operator splitting methods for American option pricing. Appl. Math. Lett. 17 (2004) 809–814. [CrossRef] [Google Scholar]
  11. K.R. Jackson, S. Jaimungal and V. Surkov, Fourier space time-stepping for option pricing with Lévy models. J. Comput. Fin. 12 (2008) 1–29. [CrossRef] [Google Scholar]
  12. M.K. Kadalbajoo, L.P. Tripathi and A. Kumar, Second order accurate IMEX methods for option pricing under Merton and Kou jump-diffusion models. J. Sci. Comput. 65 (2015) 979–1024. [CrossRef] [Google Scholar]
  13. S.G. Kou, A jump-diffusion model for option pricing. Manage. Sci. 48 (2002) 1086–1101. [CrossRef] [Google Scholar]
  14. Y. Kwon and Y. Lee, A second-order finite difference method for option pricing under jump-diffusion models. SIAM J. Numer. Anal. 49 (2011) 2598–2617. [CrossRef] [Google Scholar]
  15. J. Lee and Y. Lee, Stability of an implicit method to evaluate option prices under local volatility with jumps. Appl. Numer. Math. 87 (2015) 20–30. [CrossRef] [Google Scholar]
  16. Y. Lee, Financial options pricing with regime-switching jump-diffusions. Comput. Math. Appl. 68 (2014) 392–404. [CrossRef] [Google Scholar]
  17. R.C. Merton, Option pricing when underlying stock returns are discontinuous. J. Fin. Econ. 3 (1976) 125–144. [CrossRef] [Google Scholar]
  18. V. Naik, Option valuation and hedging strategies with jumps in the volatility of asset returns. J. Fin. 48 (1993) 1969–1984. [CrossRef] [Google Scholar]
  19. N. Rambeerich and A.A. Pantelous, A high order finite element scheme for pricing options under regime switching jump diffusion processes. J. Comput. Appl. Math. 300 (2016) 83–96. [CrossRef] [Google Scholar]
  20. A. Ramponi, Fourier transform methods for regime-switching jump-diffusions and the pricing of forward starting options. Int. J. Theor. Appl. Fin. 15 (2012) 1250037. [CrossRef] [Google Scholar]
  21. S. Salmi and J. Toivanen, IMEX schemes for pricing options under jump-diffusion models. Appl. Numer. Math. 84 (2014) 33–45. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you