Free Access
Volume 53, Number 5, September-October 2019
Page(s) 1715 - 1739
Published online 13 September 2019
  1. I. Aavatsmark and R. Klausen, Well index in reservoir simulation for slanted and slightly curved wells in 3D grids. SPE J. 8 (2003) 41–48. [CrossRef] [Google Scholar]
  2. R.A. Adams and J.J. Fournier, Sobolev Spaces. Academic Press, Cambridge, MA, 140 (2003). [Google Scholar]
  3. T. Apel, O. Benedix, D. Sirch and B. Vexler, A priori mesh grading for an elliptic problem with dirac right-hand side. SIAM J. Numer. Anal. 49 (2011) 992–1005 [Google Scholar]
  4. T. Bærland, M. Kuchta and K.-A. Mardal, Multigrid Methods for Discrete Fractional Sobolev Spaces (2018) [Google Scholar]
  5. S. Balay, W.D. Gropp, L.C. McInnes and B.F. Smith, Efficient management of parallelism in object oriented numerical software libraries (1997) 163–202. [Google Scholar]
  6. S. Balay, S. Abhyankar, M.F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes, K. Rupp, B.F. Smith, S. Zampini, H. Zhang and H. Zhang, PETSc users manual. Technical Report ANL-95/11 – Revision 3.8, Argonne National Laboratory (2017). [Google Scholar]
  7. S. Bertoluzza, A. Decoene, L. Lacouture and S. Martin, Local error estimates of the finite element method for an elliptic problem with a dirac source term. Numer. Methods Partial Differ. Equ. 34 (2018) 97–120. [Google Scholar]
  8. W.M. Boon, J.M. Nordbotten and J.E. Vatne, Functional Analysis and Exterior Calculus on Mixed-Dimensional Geometries. Preprint arXiv:1710.00556 (2017). [Google Scholar]
  9. L. Cattaneo and P. Zunino, A computational model of drug delivery through microcirculation to compare different tumor treatments. Int. J. Numer. Methods Biomed. Eng. 30 (2014) 1347–1371. [CrossRef] [PubMed] [Google Scholar]
  10. L.D. Dalcin, R.R. Paz, P.A. Kler and A. Cosimo, Parallel distributed computing using Python. New Computational Methods and Software Tools. Adv. Water Res. 34 (2011) 1124–1139. [CrossRef] [Google Scholar]
  11. C. D’Angelo, Finite element approximation of elliptic problems with dirac measure terms in weighted spaces: Applications to one- and three-dimensional coupled problems. SIAM J. Numer. Anal. 50 (2012) 194–215. [Google Scholar]
  12. C. D’Angelo and A. Quarteroni, On the coupling of 1D and 3D diffusion-reaction equations: Application to tissue perfusion problems. Math. Models Methods Appl. Sci. 18 (2008) 1481–1504. [Google Scholar]
  13. F. Drechsler, C. Wolters, T. Dierkes, H. Si and L. Grasedyck, A full subtraction approach for finite element method based source analysis using constrained delaunay tetrahedralisation. NeuroImage 46 (2009) 1055–1065. [CrossRef] [PubMed] [Google Scholar]
  14. L.C. Evans, Partial Differential Equations. American Mathematical Society, Providence, RI (2010). [Google Scholar]
  15. R.E. Ewing, R.D. Lazarov, S.L. Lyons, D.V. Papavassiliou, J. Pasciak and G. Qin, Numerical well model for non-darcy flow through isotropic porous media. Comput. Geosci. 3 (1999) 185–204. [Google Scholar]
  16. A. Ferroni, L. Formaggia and A. Fumagalli, Numerical analysis of Darcy problem on surfaces. ESAIM: M2AN 50 (2016) 1615–1630. [CrossRef] [EDP Sciences] [Google Scholar]
  17. V. Girault, K. Kumar and M.F. Wheeler, Convergence of iterative coupling of geomechanics with flow in a fractured poroelastic medium. Comput. Geosci. 20 (2016) 997–1011. [Google Scholar]
  18. I.G. Gjerde, K. Kumar and J.M. Nordbotten, A singularity removal method for coupled 1D–3D flow models. Preprint arXiv:1812.03055 (2018). [Google Scholar]
  19. I.G. Gjerde, K. Kumar and J.M. Nordbotten, Well modelling by means of coupled 1D–3D flow models.In: ECMOR XVI – 16th European Conference on the Mathematics of Oil Recovery (2018). [Google Scholar]
  20. L. Grinberg, E. Cheever, T. Anor, J.R. Madsen and G.E. Karniadakis, Modeling blood flow circulation in intracranial arterial networks: a comparative 3D/1D simulation study. Ann. Biomed. Eng. 39 (2011) 297–309 [CrossRef] [PubMed] [Google Scholar]
  21. V.A. Kondratiev and O. Oleinik, Russian mathematical surveys boundary-value problems for partial differential equations in non-smooth domains. Russ. Math. Surv 38 (1983). [Google Scholar]
  22. T. Köppl and B. Wohlmuth, Optimal a priori error estimates for an elliptic problem with dirac right-hand side. SIAM J. Numer. Anal. 52 (2014) 1753–1769. [Google Scholar]
  23. T. Köppl, E. Vidotto and B. Wohlmuth, A local error estimate for the poisson equation with a line source term. Numerical Mathematics and Advanced Applications ENUMATH 2015. In Vol. 112 of Lecture Notes in Computational Science and Engineering. Springer, Cham (2016) 421–429. [CrossRef] [Google Scholar]
  24. T. Köppl, E. Vidotto, B. Wohlmuth and P. Zunino, Mathematical modeling, analysis and numerical approximation of second-order elliptic problems with inclusions. Math. Models Methods Appl. Sci. 28 (2018) 953–978. [Google Scholar]
  25. V.A. Koslov, V.G. Mazya and J. Rossman, Elliptic boundary value problems in domains with point singularities. In Vol. 52 of Mathematical Surveys and Monographs (1997). [Google Scholar]
  26. M. Kuchta, M. Nordaas, J.C.G. Verschaeve, M. Mortensen and K.-A. Mardal, Preconditioners for saddle point systems with trace constraints coupling 2D and 1D domains. SIAM J. Sci. Comput. 38 (2016) B962–B987. [Google Scholar]
  27. A. Kufner, em Weighted Sobolev Spaces. John Wiley and Sons, Hoboken, NJ (1993) [Google Scholar]
  28. K.-A. Lie, S. Krogstad, I.S. Ligaarden, J.R. Natvig, H.M. Nilsen and B. Skaflestad, Open-source matlab implementation of consistent discretisations on complex grids. Comput. Geosci. 16 (2012) 297–322. [Google Scholar]
  29. A. Llau, L. Jason, F. Dufour and J. Baroth, Finite element modelling of 1D steel components in reinforced and prestressed concrete structures. Eng. Struct. 127 (2016) 769–783. [Google Scholar]
  30. A. Logg, K.-A. Mardal and G.N. Wells, Automated Solution of Differential Equations by the Finite Element Method. Springer, Berlin (2012) [CrossRef] [Google Scholar]
  31. V. Martin, J. Jaffré and J.E. Roberts, Modeling fractures and barriers as interfaces for flow in porous media. SIAM J. Sci. Comput. 26 (2005) 1667–1691. [Google Scholar]
  32. S.S. Mundal, E. Keilegavlen and I. Aavatsmark, Simulation of anisotropic heterogeneous near-well flow using mpfa methods on flexible grids. Comput. Geosci. 14 (2010) 509–525. [Google Scholar]
  33. M. Nabil and P. Zunino, A computational study of cancer hyperthermia based on vascular magnetic nanoconstructs. R. Soc. Open Sci. 3 (2016). [Google Scholar]
  34. D.W. Peaceman, Interpretation of well-block pressures in numerical reservoir simulation. Soc. Pet. Eng. J. 18 (1978) 183–194 [CrossRef] [Google Scholar]
  35. L. Possenti, G. Casagrande, S.D. Gregorio, P. Zunino and M. Constantino, Numerical simulations of the microvascular fluid balance with a non-linear model of the lymphatic system. MOX-Report No. 35 (2018) [Google Scholar]
  36. F. Rathgeber, D.A. Ham, L. Mitchell, M. Lange, F. Luporini, A.T.T. McRae, G.-T. Bercea, G.R. Markall and P.H.J. Kelly, Firedrake: automating the finite element method by composing abstractions. ACM Trans. Math. Softw. 43 (2016) 24:1–24:27. [Google Scholar]
  37. J. Reichold, M. Stampanoni, A.L. Keller, A. Buck, P. Jenny and B. Weber, Vascular graph model to simulate the cerebral blood flow in realistic vascular networks. J. Cerebral Blood Flow Metab. 29 (2009) 1429–1443. [CrossRef] [Google Scholar]
  38. R. Scott, Finite element convergence for singular data. Numer. Math. 21 (1973) 317–327. [Google Scholar]
  39. T. Secomb, R. Hsu, N. Beamer and B. Coull, Theoretical simulation of oxygen transport to brain by networks of microvessels: effects of oxygen supply and demand on tissue hypoxia. Microcirculation 7 (2010) 237–247. [Google Scholar]
  40. O. Strack, Analytical Groundwater Mechanics. Cambridge University Press, Cambridge (2017). [CrossRef] [Google Scholar]
  41. T. Strouboulis, I. Babuška and K. Copps, The design and analysis of the generalized finite element method. Comput. Methods Appl. Mech. Eng. 181 (2000) 43–69. [Google Scholar]
  42. C.L. Tardif, A. Schäfer, R. Trampel, A. Villringer, R. Turner and P.-L. Bazin, Open science cbs neuroimaging repository: Sharing ultra-high-field mr images of the brain. Sharing the wealth: Brain Imaging Repositories in 2015. NeuroImage 124 (2016) 1143–1148. [CrossRef] [PubMed] [Google Scholar]
  43. C.J. Weiss, Finite-element analysis for model parameters distributed on a hierarchy of geometric simplices. Geophysics 82 (2017) E155–E167. [CrossRef] [Google Scholar]
  44. C.H. Wolters, H. Köstler, C. Möller, J. Härdtlein, L. Grasedyck and W. Hackbusch, Numerical mathematics of the subtraction method for the modeling of a current dipole in EEG source reconstruction using finite element head models. SIAM J. Sci. Comput. 30 (2007) 24–45. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you