Free Access
Volume 53, Number 5, September-October 2019
Page(s) 1695 - 1713
Published online 13 September 2019
  1. M.M. Attarakih, H.-J. Bart and N.M. Faqir, Solution of the droplet breakage equation for interacting liquid–liquid dispersions: a conservative discretization approach. Chem. Eng. Sci. 59 (2004) 2547–2565. [Google Scholar]
  2. H. Berthiaux and J. Dodds, A new estimation technique for the determination of breakage and selection parameters in batch grinding. Powder Technol. 94 (1997) 173–179. [Google Scholar]
  3. J.-P. Bourgade and F. Filbet, Convergence of a finite volume scheme for coagulation-fragmentation equations. Math. Comput. 77 (2008) 851–882. [Google Scholar]
  4. A. Braumann, M. Kraft and W. Wagner, Numerical study of a stochastic particle algorithm solving a multidimensional population balance model for high shear granulation. J. Comput. Phys. 229 (2010) 7672–7691. [Google Scholar]
  5. P. Dubovskii, V. Galkin and I. Stewart, Exact solutions for the coagulation-fragmentation equation. J. Phys. A: Math. General 25 (1992) 4737. [CrossRef] [Google Scholar]
  6. L. Forestier-Coste and S. Mancini, A finite volume preserving scheme on nonuniform meshes and for multidimensional coalescence. SIAM J. Sci. Comput. 34 (2012) B840–B860. [Google Scholar]
  7. S. Ganesan, An operator-splitting galerkin/supg finite element method for population balance equations: stability and convergence. ESAIM: M2AN 46 (2012) 1447–1465. [CrossRef] [EDP Sciences] [Google Scholar]
  8. Y.K. Ho, C. Kirse, H. Briesen, M. Singh, C.-H. Chan and K.-W. Kow, Towards improved predictions for the enzymatic chain-end scission of natural polymers by population balances: the need for a non-classical rate kernel. Chem. Eng. Sci. 176 (2018) 329–342. [Google Scholar]
  9. M. Hounslow, R. Ryall and V. Marshall, A discretized population balance for nucleation, growth, and aggregation. AIChE J. 34 (1988) 1821–1832. [Google Scholar]
  10. W. Hundsdorfer and J.G. Verwer, Numerical solution of time-dependent advection-diffusion-reaction equations. In Vol. 33, Springer Science & Business Media, Berlin (2013). [Google Scholar]
  11. H.Y. Ismail, M. Singh, S. Darwish, M. Kuhs, S. Shirazian, D.M. Croker, M. Khraisheh, A.B. Albadarin and G.M. Walker, Developing ann-kriging hybrid model based on process parameters for prediction of mean residence time distribution in twin-screw wet granulation. Powder Technol. 343 (2019) 568–577. [Google Scholar]
  12. G. Kaur, M. Singh, T. Matsoukas, J. Kumar, T. De Beer and I. Nopens, Two-compartment modeling and dynamics of top-sprayed fluidized bed granulator. Appl. Math. Modell. 68 (2019) 267–280. [CrossRef] [Google Scholar]
  13. S. Kumar and D. Ramkrishna, On the solution of population balance equations by discretization – i. A fixed pivot technique. Chem. Eng. Sci. 51 (1996) 1311–1332. [Google Scholar]
  14. J. Kumar and G. Warnecke, Convergence analysis of sectional methods for solving breakage population balance equations-I: the fixed pivot technique. Numer. Math. 111 (2008) 81–108. [Google Scholar]
  15. J. Kumar and G. Warnecke, Convergence analysis of sectional methods for solving breakage population balance equations-II: the cell average technique. Numer. Math. 110 (2008) 539–559. [Google Scholar]
  16. J. Kumar, M. Peglow, G. Warnecke, S. Heinrich and L. Mörl, Improved accuracy and convergence of discretized population balance for aggregation: the Cell Average Technique. Chem. Eng. Sci. 61 (2006) 3327–3342. [Google Scholar]
  17. R. Kumar, J. Kumar and G. Warnecke, Moment preserving finite volume schemes for solving population balance equations incorporating aggregation, breakage, growth and source terms. Math. Models Methods Appl. Sci. 23 (2013) 1235–1273. [Google Scholar]
  18. J. Kumar, J. Saha and E. Tsotsas, Development and convergence analysis of a finite volume scheme for solving breakage equation. SIAM J. Numer. Anal. 53 (2015) 1672–1689. [Google Scholar]
  19. K. Lee and T. Matsoukas, Simultaneous coagulation and break-up using constant-N monte carlo. Powder Technol. 110 (2000) 82–89. [Google Scholar]
  20. K.F. Lee, R.I. Patterson, W. Wagner and M. Kraft, Stochastic weighted particle methods for population balance equations with coagulation, fragmentation and spatial inhomogeneity. J. Comput. Phys. 303 (2015) 1–18. [Google Scholar]
  21. P. Linz, Convergence of a discretization method for integro-differential equations. Numer. Math. 25 (1975) 103–107. [Google Scholar]
  22. J. Litster and B. Ennis, The Science and Engineering of Granulation Processes. In Vol. 15, Springer Science & Business Media, Berlin (2013). [Google Scholar]
  23. B.J. McCoy and G. Madras, Discrete and continuous models for polymerization and depolymerization. Chem. Eng. Sci. 56 (2001) 2831–2836. [Google Scholar]
  24. W.J. Menz, J. Akroyd and M. Kraft, Stochastic solution of population balance equations for reactor networks. J. Comput. Phys. 256 (2014) 615–629. [Google Scholar]
  25. M. Nicmanis and M. Hounslow, Finite-element methods for steady-state population balance equations. AIChE J. 44 (1998) 2258–2272. [Google Scholar]
  26. L. Oddershede, P. Dimon and J. Bohr, Self-organized criticality in fragmenting. Phys. Rev. Lett. 71 (1993) 3107. [CrossRef] [PubMed] [Google Scholar]
  27. H.M. Omar and S. Rohani, Crystal population balance formulation and solution methods: a review. Crystal Growth Des. 17 (2017) 4028–4041. [CrossRef] [Google Scholar]
  28. D. Ramkrishna, Population Balances: Theory and Applications to Particulate Systems in Engineering. Elsevier, Amsterdam (2000). [Google Scholar]
  29. J. Saha, J. Kumar and S. Heinrich, A volume-consistent discrete formulation of particle breakage equation. Comput. Chem. Eng. 97 (2017) 147–160. [Google Scholar]
  30. J. Saha, J. Kumar and S. Heinrich, On the approximate solutions of fragmentation equations. Proc. R. Soc. A 474 (2018) 20170541. [CrossRef] [Google Scholar]
  31. P. Singh and M. Hassan, Kinetics of multidimensional fragmentation. Phys. Rev. E 53 (1996) 3134. [Google Scholar]
  32. M. Singh, J. Kumar, A. Bück and E. Tsotsas, A volume-consistent discrete formulation of aggregation population balance equations. Math. Methods Appl. Sci. 39 (2015) 2275–2286. [Google Scholar]
  33. S. Wu, E.K. Yapp, J. Akroyd, S. Mosbach, R. Xu, W. Yang and M. Kraft, Extension of moment projection method to the fragmentation process. J. Comput. Phys. 335 (2017) 516–534. [Google Scholar]
  34. R.M. Ziff and E. McGrady, The kinetics of cluster fragmentation and depolymerisation. J. Phys. A: Math. General 18 (1985) 3027. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you