Free Access
Volume 53, Number 6, November-December 2019
Page(s) 2109 - 2119
Published online 12 December 2019
  1. O.E. Alon, A.I. Streltsov and L.S. Cederbaum, Multiconfigurational time-dependent Hartree method for bosons: many-body dynamics of bosonic systems. Phys. Rev. A 77 (2008) 033613. [Google Scholar]
  2. X. Antoine, W. Bao and C. Besse, Computational methods for the dynamics of the nonlinear Schrödinger/Gross–Pitaevskii equations. Comput. Phys. Commun. 184 (2013) 2621–2633. [Google Scholar]
  3. W. Auzinger, I. Brezinova, H. Hofstätter, K. Ishikawa, O. Koch and T. Sato, Efficient adaptive exponential time integrators for nonlinear Schrödinger equations with nonlocal potential. In preparation. [Google Scholar]
  4. W. Auzinger, H. Hofstätter and O. Koch, Coefficients of various splitting methods Available at: (2017). [Google Scholar]
  5. S. Balac and A. Fernandez, SPIP: a computer program imlementing the interaction picture method for the simulation of light-wave propagation in optical fibers. Comput. Phys. Commun. 199 (2016) 139–152. [Google Scholar]
  6. S. Balac, A. Fernandez, F. Mahé, F. Méhats and R. Texier-Picard, The interaction picture method for solving the generalized nonlinear Schrödinger equation in optics. ESAIM: M2AN 50 (2016) 945–964. [CrossRef] [EDP Sciences] [Google Scholar]
  7. S. Balac and F. Mahé, Embedded Runge-Kutta scheme for step-size control in the interaction picture method. Comput. Phys. Commun. 184 (2013) 1211–1219. [Google Scholar]
  8. W. Bao, Q. Tang and Z. Xu, Numerical methods and comparison for computing dark and bright solitons in the nonlinear Schrödinger equation. J. Comput. Phys. 235 (2013) 423–445. [Google Scholar]
  9. M.H. Beck, A. Jäckle, G.A. Worth and H.-D. Meyer, The multiconfiguration time-dependent Hartree (MCTDH) method: a highly efficient algorithm for propagating wavepackets. Phys. Rep. 324 (2000) 1–105. [Google Scholar]
  10. M.H. Beck and H.-D. Meyer, An efficient and robust integration scheme for the equations of the multiconfiguration time-dependent Hartree (MCTDH) method. Z. Phys. D 42 (1997) 113–129. [CrossRef] [Google Scholar]
  11. C. Besse, G. Dujardin and I. Lacroix-Violet, High order exponential integrators for nonlinear Schrödinger equations with application to rotating Bose-Einstein condensates. 86Available from (2015). [Google Scholar]
  12. I. Březinová, A.U.J. Lode, A.I. Streltsov, O.E. Alon, L.S. Cederbaum and J. Burgdörfer, Wave chaos as signature for depletion of Bose-Einstein condensates. Phys. Rev. A 86 (2012) 013630. [Google Scholar]
  13. J. Caillat, J. Zanghellini, M. Kitzler, W. Kreuzer, O. Koch and A. Scrinzi, Correlated multielectron systems in strong laser pulses – an MCTDHF approach, Phys. Rev. A 71 (2005) 012712. [Google Scholar]
  14. B. Cano and A. González-Pachón, Projected explicit Lawson methods for the integration of Schrödinger equation. Numer. Methods Partial Differ. Eq. 31 (2015) 78–104. [CrossRef] [Google Scholar]
  15. B. Caradoc-Davies, Vortex dynamics in Bose-Einstein condensate, Ph.D. thesis, University of Otago, New Zealand (2000). [Google Scholar]
  16. Q. Chang, E. Jia and W. Sun, Difference schemes for solving the generalized nonlinear Schrödinger equation. J. Comput. Phys. 148 (1999) 397–415. [Google Scholar]
  17. M. Davis, Dynamics in Bose-Einstein condensates. Ph.D. thesis, University of Oxford, , UK (2001). [Google Scholar]
  18. P.A.M. Dirac, Note on exchange phenomena in the Thomas atom. Proc. Cambridge Phil. Soc. 26 (1930) 376–385. [CrossRef] [Google Scholar]
  19. J. Dormand and P. Prince, A family of embedded Runge-Kutta formulae. J. Comput. Appl. Math. 6 (1980) 19–26. [Google Scholar]
  20. J. Feist, S. Nagele, R. Pazourek, E. Persson, B.I. Schneider, L.A. Collins and J. Burgdörfer, Nonsequential two-photon double ionization of helium. Phys. Rev. A 77 (2008) 043420. [Google Scholar]
  21. J. Frenkel, Wave Mechanics, Advanced General Theory. Clarendon Press, Oxford (1934). [Google Scholar]
  22. E. Hairer, S.P. Nørsett and G. Wanner, Solving Ordinary Differential Equations I. Springer-Verlag, Berlin–Heidelberg–New York (1987). [CrossRef] [Google Scholar]
  23. D.J. Haxton, K.V. Lawler and C.W. McCurdy, Multiconfiguration time-dependent Hartree-Fock treatment of electronic and nuclear dynamics in diatomic molecules. Phys. Rev. A 83 (2011) 063416. [Google Scholar]
  24. P. Henning and J. Wärnegård, Numerical comparison of mass-conservative schemes for the Gross-Pitaevskii equation Preprint (2018). [Google Scholar]
  25. M. Hochbruck and A. Ostermann, On the convergence of Lawson methods for semilinear stiff problems. CRC Preprint 2017/9, KIT Karlsruhe Institute of Technology. Preprint available from (2017). [Google Scholar]
  26. J. Hult, A fourth-order Runge-Kutta in the interaction picture method for simulating supercontinuum generation in optical fibers. J. Lightwave Technol. 25 (2007) 3770–3775. [Google Scholar]
  27. T. Kato and H. Kono, Time-dependent multiconfiguration theory for electronic dynamics of molecules in an intense laser field. Chem. Phys. Lett. 392 (2018) 533–540. [Google Scholar]
  28. O. Koch, W. Kreuzer and A. Scrinzi, Approximation of the time-dependent electronic Schrödinger equation by MCTDHF. Appl. Math. Comput. 173 (2006) 960–976. [Google Scholar]
  29. O. Koch and C. Lubich, Regularity of the multi-configuration time-dependent Hartree approximation in quantum molecular dynamics. ESAIM: M2AN 41 (2007) 315–331. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  30. O. Koch and C. Lubich, Variational splitting time integration of the MCTDHF equations in electron dynamics. IMA J. Numer. Anal. 31 (2011) 379–395. [CrossRef] [MathSciNet] [Google Scholar]
  31. O. Koch, C. Neuhauser and M. Thalhammer, Embedded split-step formulae for the time integration of nonlinear evolution equations. Appl. Numer. Math. 63 (2013) 14–24. [Google Scholar]
  32. O. Koch, C. Neuhauser and M. Thalhammer, Error analysis of high-order splitting methods for nonlinear evolutionary Schrödinger equations and application to the MCTDHF equations in electron dynamics. ESAIM: M2AN 47 (2013) 1265–1284. [CrossRef] [EDP Sciences] [Google Scholar]
  33. S. Krogstad, Generalized integrating factor methods for stiff PDEs. J. Comput. Phys. 203 (2005) 72–88. [Google Scholar]
  34. J.D. Lawson, Generalized Runge-Kutta processes for stable systems with large Lipschitz constants. SIAM J. Numer. Anal. 4 (1967) 372–380. [Google Scholar]
  35. C. Lubich, On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations. Math. Comp. 77 (2008) 2141–2153. [CrossRef] [MathSciNet] [Google Scholar]
  36. H.-D. Meyer, U. Manthe and L.S. Cederbaum, The multi-configurational time-dependent Hartree approach. Chem. Phys. Lett. 165 (1990) 73–78. [Google Scholar]
  37. H.-D. Meyer and G.A. Worth, Quantum molecular dynamics: propagating wavepackets and density operators using the multi-configuration time-dependent Hartree (MCTDH) method. Theo. Chem. Acc. 109 (2003) 251–267. [CrossRef] [Google Scholar]
  38. I. Nagy, R. Diez Muiño, J.I. Juaristi and P.M. Echenique, Spin-resolved pair-distribution functions in an electron gas: a scattering approach based on consistent potentials. Phys. Rev. B 69 (2004) 233105. [Google Scholar]
  39. M. Nest and T. Klamroth, Correlated many-electron dynamics: Application to inelastic electron scattering at a metal film. Phys. Rev. A 72 (2005) 012710. [Google Scholar]
  40. M. Nest, T. Klamroth and P. Saalfrank, The multiconfiguration time-dependent Hartree-Fock method for quantum chemical calculations. J. Chem. Phys. 122 (2005) 124102. [Google Scholar]
  41. C.J. Pethick and H. Smith, Bose-Einstein Condensation in Dilute Gases. Cambridge University Press, Cambridge (2008). [CrossRef] [Google Scholar]
  42. A. Quarteroni, R. Sacco and F. Saleri, Numerical Mathematics, 2nd edition. Springer-Verlag, Berlin-Heidelberg (2007.) [Google Scholar]
  43. C. Raman, J.R. Abo-Shaeer, J.M. Vogels, K. Xu and W. Ketterle, Vortex nucleation in a stirred Bose-Einstein condensate. Phys. Rev. Lett. 87 (2001) 210402. [CrossRef] [PubMed] [Google Scholar]
  44. T. Sato and K.L. Ishikawa, Time-dependent complete-active-space self-consistent-field method for multielectron dynamics in intense laser fields. Phys. Rev. A 88 (2013) 023402. [Google Scholar]
  45. C.A. Ullrich, Time-dependent Density-functional Theory: Concepts and Applications. Oxford University Press, Oxford; New York, NY (2011). [CrossRef] [Google Scholar]
  46. P. Whalen, M. Brio and J.V. Moloney, Exponential time-differencing with embedded Runge-Kutta adaptive step control. J. Comput. Phys. 280 (2015) 579–601. [Google Scholar]
  47. J. Zanghellini, M. Kitzler, T. Brabec and A. Scrinzi, Testing the multi-configuration time-dependent Hartree-Fock method. J. Phys. B: At. Mol. Phys. 37 (2004) 763–773. [CrossRef] [Google Scholar]
  48. J. Zanghellini, M. Kitzler, C. Fabian, T. Brabec and A. Scrinzi, An MCTDHF approach to multi-electron dynamics in laser fields. Laser Phys. 13 (2003) 1064–1068. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you