Free Access
Issue
ESAIM: M2AN
Volume 53, Number 6, November-December 2019
Page(s) 2081 - 2108
DOI https://doi.org/10.1051/m2an/2019057
Published online 10 December 2019
  1. M. Amara and J.M. Thomas, Equilibrium finite elements for the linear elastic problem. Numer. Math. 33 (1979) 367–383. [Google Scholar]
  2. I. Ambartsumyan, E. Khattatov, J.M. Nordbotten and I. Yotov, A multipoint stress mixed finite element method for elasticity on quadrilateral grids. Preprint arXiv:1811.01928 [math.NA] (2018). [Google Scholar]
  3. I. Ambartsumyan, E. Khattatov, J.M. Nordbotten and I. Yotov, A multipoint stress mixed finite element method for elasticity on simplicial grids. Preprint arXiv:1805.09920 [math.NA] (2018). [Google Scholar]
  4. T. Arbogast, L.C. Cowsar, M.F. Wheeler and I. Yotov, Mixed finite element methods on nonmatching multiblock grids. SIAM J. Numer. Anal. 37 (2000) 1295–1315. [Google Scholar]
  5. T. Arbogast, G. Pencheva, M.F. Wheeler and I. Yotov, A multiscale mortar mixed finite element method. Multiscale Model. Simul. 6 (2007) 319–346. [Google Scholar]
  6. D. Arndt, W. Bangerth, D. Davydov, T. Heister, L. Heltai, M. Kronbichler, M. Maier, J.-P. Pelteret, B. Turcksin and D. Wells, The deal.II library, version 8.5. J. Numer. Math. 25 (2017) 137–146. [CrossRef] [Google Scholar]
  7. D.N. Arnold and J.J. Lee, Mixed methods for elastodynamics with weak symmetry. SIAM J. Numer. Anal. 52 (2014) 2743–2769. [Google Scholar]
  8. D.N. Arnold, F. Brezzi and J. Douglas Jr, PEERS: a new mixed finite element for plane elasticity. Japan J. Appl. Math. 1 (1984) 347–367. [CrossRef] [MathSciNet] [Google Scholar]
  9. D.N. Arnold, R.S. Falk and R. Winther, Mixed finite element methods for linear elasticity with weakly imposed symmetry. Math. Comput. 76 (2007) 1699–1723. [Google Scholar]
  10. D.N. Arnold, G. Awanou and W. Qiu, Mixed finite elements for elasticity on quadrilateral meshes. Adv. Comput. Math. 41 (2015) 553–572. [Google Scholar]
  11. G. Awanou, Rectangular mixed elements for elasticity with weakly imposed symmetry condition. Adv. Comput. Math. 38 (2013) 351–367. [Google Scholar]
  12. D. Boffi, F. Brezzi and M. Fortin, Reduced symmetry elements in linear elasticity. Commun. Pure Appl. Anal. 8 (2009) 95–121. [MathSciNet] [Google Scholar]
  13. F. Brezzi and M. Fortin, Mixed and hybrid finite element methods. In: Vol. 15 of Springer Series in Computational Mathematics. Springer-Verlag, New York (1991). [CrossRef] [Google Scholar]
  14. P.G. Ciarlet, The finite element method for elliptic problems. In: Vol. 40 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia, PA (2002). [Google Scholar]
  15. B. Cockburn, J. Gopalakrishnan and J. Guzmán, A new elasticity element made for enforcing weak stress symmetry. Math. Comput. 79 (2010) 1331–1349. [Google Scholar]
  16. L.C. Cowsar, J. Mandel and M.F. Wheeler, Balancing domain decomposition for mixed finite elements. Math. Comput. 64 (1995) 989–1015. [Google Scholar]
  17. M. Dauge, Elliptic boundary value problems on corner domains. Smoothness and asymptotics of solutions. In: Vol. 1341 of Lecture Notes in Mathematics. Springer-Verlag, Berlin (1988). [Google Scholar]
  18. Y. Efendiev, J. Galvis and T.Y. Hou, Generalized multiscale finite element methods (GMsFEM). J. Comput. Phys. 251 (2013) 116–135. [Google Scholar]
  19. C. Farhat and F.-X. Roux, A method of finite element tearing and interconnecting and its parallel solution algorithm. Int. J. Numer. Methods Eng. 32 (1991) 1205–1227. [Google Scholar]
  20. A. Fritz, S. Hüeber and B.I. Wohlmuth, A comparison of mortar and Nitsche techniques for linear elasticity. Calcolo 41 (2004) 115–137. [CrossRef] [Google Scholar]
  21. J. Galvis and M. Sarkis, Non-matching mortar discretization analysis for the coupling Stokes-Darcy equations. Electron. Trans. Numer. Anal. 26 (2007) 350–384. [Google Scholar]
  22. B. Ganis and I. Yotov, Implementation of a mortar mixed finite element method using a multiscale flux basis. Comput. Methods Appl. Mech. Eng. 198 (2009) 3989–3998. [Google Scholar]
  23. V. Girault, G.V. Pencheva, M.F. Wheeler and T.M. Wildey, Domain decomposition for linear elasticity with DG jumps and mortars. Comput. Methods Appl. Mech. Eng. 198 (2009) 1751–1765. [Google Scholar]
  24. R. Glowinski and M.F. Wheeler, Domain decomposition and mixed finite element methods for elliptic problems, edited by R. Glowinskin, G.H. Golub, G.A. Meurant and J. Périaux. In: First International Symposium on Domain Decomposition Methods for Partial Differential Equations. SIAM, Philadelphia (1988) 144–172. [Google Scholar]
  25. P. Goldfeld, L.F. Pavarino and O.B. Widlund, Balancing Neumann-Neumann preconditioners for mixed approximations of heterogeneous problems in linear elasticity. Numer. Math. 95 (2003) 283–324. [Google Scholar]
  26. J. Gopalakrishnan and J. Guzmán, A second elasticity element using the matrix bubble. IMA J. Numer. Anal. 32 (2012) 352–372. [CrossRef] [MathSciNet] [Google Scholar]
  27. P. Grisvard, Elliptic problems in nonsmooth domains. In: Vol. 69 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2011). [Google Scholar]
  28. P. Hauret and P. Le Tallec, A discontinuous stabilized mortar method for general 3D elastic problems. Comput. Methods Appl. Mech. Eng. 196 (2007) 4881–4900. [Google Scholar]
  29. C.T. Kelley, Iterative methods for linear and nonlinear equations. In: Vol. 16 of Frontiers in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia (1995). [Google Scholar]
  30. H.H. Kim, A BDDC algorithm for mortar discretization of elasticity problems. SIAM J. Numer. Anal. 46 (2008) 2090–2111. [Google Scholar]
  31. H.H. Kim, A FETI-DP formulation of three dimensional elasticity problems with mortar discretization. SIAM J. Numer. Anal. 46 (2008) 2346–2370. [Google Scholar]
  32. A. Klawonn and O.B. Widlund, A domain decomposition method with Lagrange multipliers for linear elasticity. In: Eleventh International Conference on Domain Decomposition Methods (London, 1998). Augsburg (1999) 49–56. [Google Scholar]
  33. J. Kovacik, Correlation between Young’s modulus and porosity in porous materials. J. Mater. Sci. Lett. 18 (1999) 1007–1010. [Google Scholar]
  34. J.-L. Lions and E. Magenes, In: Vol. I of Non-homogeneous Boundary Value Problems and Applications. Springer-Verlag, New York-Heidelberg (1972). [Google Scholar]
  35. T.P. Mathew, Domain decomposition and iterative refinement methods for mixed finite element discretizations of elliptic problems. Ph.D. thesis, Courant Institute of Mathematical Sciences, New York University (1989), Tech. Rep. 463. [Google Scholar]
  36. L.F. Pavarino, O.B. Widlund and S. Zampini, BDDC preconditioners for spectral element discretizations of almost incompressible elasticity in three dimensions. SIAM J. Sci. Comput. 32 (2010) 3604–3626. [Google Scholar]
  37. G. Pencheva and I. Yotov, Balancing domain decomposition for mortar mixed finite element methods. Numer. Linear Algebra Appl. 10 (2003) 159–180. [Google Scholar]
  38. G.V. Pencheva, M. Vohralk, M.F. Wheeler and T. Wildey, Robust a posteriori error control and adaptivity for multiscale, multinumerics, and mortar coupling. SIAM J. Numer. Anal. 51 (2013) 526–554. [Google Scholar]
  39. M. Peszyńska, M.F. Wheeler and I. Yotov, Mortar upscaling for multiphase flow in porous media. Comput. Geosci. 6 (2002) 73–100. [Google Scholar]
  40. A. Quarteroni and A. Valli, Domain Decomposition Methods for Partial Differential Equations. Clarendon Press, Oxford (1999). [Google Scholar]
  41. J.E. Roberts and J.-M. Thomas, Mixed and hybrid methods. In: Vol. II of Handbook of Numerical Analysis. North-Holland, Amsterdam (1991) 523–639. [CrossRef] [Google Scholar]
  42. L.R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54 (1990) 483–493. [Google Scholar]
  43. R. Stenberg, A family of mixed finite elements for the elasticity problem. Numer. Math. 53 (1988) 513–538. [Google Scholar]
  44. A. Toselli and O. Widlund, Domain decomposition methods – algorithms and theory. In: Vol. 34 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (2005). [CrossRef] [Google Scholar]
  45. D. Vassilev, C. Wang and I. Yotov, Domain decomposition for coupled Stokes and Darcy flows. Comput. Methods Appl. Mech. Eng. 268 (2014) 264–283. [Google Scholar]
  46. M.F. Wheeler and I. Yotov, A posteriori error estimates for the mortar mixed finite element method. SIAM J. Numer. Anal. 43 (2005) 1021–1042. [Google Scholar]
  47. M.F. Wheeler, G. Xue and I. Yotov, A multiscale mortar multipoint flux mixed finite element method. ESAIM Math. Model. Numer. Anal. 46 (2012) 759–796. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you