Free Access
Issue
ESAIM: M2AN
Volume 53, Number 6, November-December 2019
Page(s) 1957 - 1979
DOI https://doi.org/10.1051/m2an/2019043
Published online 15 November 2019
  1. G. Ansanay-Alex, F. Babik, J.C. Latché and D. Vola, An L2–stable approximation of the Navier-Stokes convection operator for low–order non-conforming finite elements. Int. J. Numer. Meth. Fluids 66 (2011) 555–580. [CrossRef] [Google Scholar]
  2. J.M. Ball, A version of the fundamental theorem for Young measures . In, Vol. 344 of Lecture Notes in Physics (1989) 207–215. [CrossRef] [Google Scholar]
  3. P. Birken, Numerical methods for the unsteady compressible Navier-Stokes equations. Habilitation thesis, Kassel (2012). [Google Scholar]
  4. P.G. Ciarlet, The finite element method for elliptic problems. Classics in Applied Mathematics, Society for Industrial and Applied Mathematics (2002). [Google Scholar]
  5. P. Degond and M. Tang, All speed scheme for the low Mach number limit of the isentropic Euler equations. Commun. Comput. Phys. 10 (2011) 1–31. [Google Scholar]
  6. V. Dolejší and M. Feistauer, Discontinuous Galerkin method. In Vol. 48 of Springer Series in Computational Mathematics Springer (2015). [Google Scholar]
  7. M. Feistauer, Mathematical methods in fluid dynamics. In Vol. 67 of Pitman Monographs and Surveys in Pure and Applied Mathematics. Longman Scientific & Technical, Harlow (1993). [Google Scholar]
  8. M. Feistauer, J. Felcman and M. Lukáčová-Medvid’ová, Combined finite element-finite volume solution of compressible flow. J. Comput. Appl. Math. 63 (1995) 179–199. [Google Scholar]
  9. G.J. Gassner, A.R. Winters, F.J. Hindenlang and D.A. Kopriva, The BR1 Scheme is stable for the compressible Navier-Stokes equations. J. Sci. Comput. 77 (2018) 154–200. [Google Scholar]
  10. R. Eymard, T. Gallouët and R. Herbin, Finite volume methods. In Vol. 7 of Handbook of Nmerical Analysis (2000) 713–1018. [CrossRef] [Google Scholar]
  11. E. Feireisl, P. Gwiazda, A. Świerczewska-Gwiazda and E. Wiedemann, Dissipative measure-valued solutions to the compressible Navier-Stokes system. Calc. Var. Partial Diff. Equ. 55 (2016) 141. [CrossRef] [Google Scholar]
  12. E. Feireisl, T. Karper and A. Novotný, A convergent numerical method for the Navier–Stokes–Fourier system. IMA J. Numer. Anal. 36 (2016) 1477–1535. [CrossRef] [Google Scholar]
  13. E. Feireisl, M. Lukáčová-Medvid’ová, Convergence of a mixed finite element–finite volume scheme for the isentropic Navier-Stokes system via the dissipative measure–valued solutions. Found. Comput. Math. 18 (2018) 703–730. [CrossRef] [Google Scholar]
  14. E. Feireisl, M. Lukáčová-Medvid’ová and H. Mizerová, A finite volume scheme for the Euler system inspired by the two velocities approach.Preprint arXiv:1805.05072 (2018). [Google Scholar]
  15. E. Feireisl, M. Lukáčová-Medvid’ová and H. Mizerová, Convergence of finite volume schemes for the Euler equations via dissipative measure–valued solutions. Preprint arXiv:1803.08401 (2018). [Google Scholar]
  16. E. Feireisl and A. Novotný, Singular limits in thermodynamics of viscous fluids, 2nd edition. Birkhäuser–-Basel (2017). [CrossRef] [Google Scholar]
  17. J. Fürst and K. Kozel, Numerical solution of transonic flows through 2D and 3D turbine cascades. Comput. Visual. Sci. 4 (2002) 183–189. [CrossRef] [Google Scholar]
  18. T. Gallouët, L. Gastaldo, R. Herbin and J.C. Latché, An unconditionally stable pressure correction scheme for the compressible barotropic Navier-Stokes equations. ESAIM: M2AN 42 (2008) 303–331. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  19. T. Gallouët, R. Herbin, J.-C. Latché and D. Maltese, Convergence of the MAC scheme for the compressible stationary Navier-Stokes equations. Math. Comp. 87 (2018) 1127–1163. [CrossRef] [Google Scholar]
  20. T. Gallouët, D. Maltese and A. Novotný, Error estimates for the implicit MAC scheme for the compressible Navier-Stokes equations. Numer. Math. 141 (2019) 495–567. [Google Scholar]
  21. D. Grapsas, R. Herbin, W. Kheriji and J.-C. Latché, An unconditionally stable staggered pressure correction scheme for the compressible Navier-Stokes equations. SMAI J. Comput. Math. 2 (2016) 51–97. [CrossRef] [Google Scholar]
  22. J. Haack, S. Jin and J.G. Liu, An all–speed asymptotic–preserving method for the isentropic Euler and Navier-Stokes equations. Commun. Comput. Phys. 12 (2012) 955–980. [Google Scholar]
  23. R. Hošek and B. She, Stability and consistency of a finite difference scheme for compressible viscous isentropic flow in multi-dimension. J. Numer. Math. 26 (2018) 111–140. [CrossRef] [Google Scholar]
  24. M. Ioriatti and M. Dumbser, Semi-implicit staggered discontinuous Galerkin schemes for axially symmetric viscous compressible flows in elastic tubes. Comput. Fluids 167 (2018) 166–179. [Google Scholar]
  25. V. Jovanovič, An error estimate for a numerical scheme for the compressible Navier-Stokes system. Kragujevac J. Math. 30 (2007) 263–275. [Google Scholar]
  26. T. Karper, A convergent FEM-DG method for the compressible Navier-Stokes equations. Numer. Math. 125 (2013) 441–510. [Google Scholar]
  27. P. Louda, J. Příhoda and K. Kozel, Numerical simulation of 3D backward facing step flows at various Reynolds numbers. EPJ Web Conf. 92 (2015) 02049. [CrossRef] [Google Scholar]
  28. A. Meister and T. Sonar, Finite-volume schemes for compressible flows. Surv. Math. Ind. 8 (1998) 1–36. [Google Scholar]
  29. S. Noelle, G. Bispen, K.R. Arun, M. Lukáčová-Medvid’ová and Munz C.-D., A weakly asymptotic preserving low Mach number scheme for the Euler equations of gas dynamics. SIAM J. Sci. Comput. 36 (2014) 989–1024. [Google Scholar]
  30. P. Pedregal, Parametrized Measures and Variational Principles, Birkhäuser, Basel (1997). [CrossRef] [Google Scholar]
  31. P. Pořzková, K. Kozel and J. Horáček, Unsteady compressible flows in channel with varying walls, J. Phys.: Conf. Ser. 490 (2014) 012066. [CrossRef] [Google Scholar]
  32. Y. Sun, C. Wang and Z. Zhang, A Beale-Kato-Majda blow–up criterion for the 3-D compressible Navier-Stokes equations, J. Math. Pures. Appl. 95 (2011) 36–47. [Google Scholar]
  33. M. Wierse, A new theoretically motivated higher order upwind scheme on unstructured grids of simplices. Adv. Comput. Math. 7 (1997) 303–335. [Google Scholar]
  34. M. Wierse, D. Kröner, Higher order upwind schemes on unstructured grids for the nonstationary compressible Navier-Stokes equations in complex timedependent geometries in 3D, Flow Simulation With High-performance Computers, II, Notes on Numerical Fluid Mechanics NNFM, edited by E. H. Hirschel, Vieweg+Teubner Verlag (1996) 369–384. [CrossRef] [Google Scholar]
  35. O.C. Zienkiewicz, R.L. Taylor and P. Nithiarasu, The Finite Element Method for Fluid Dynamics. Elsevier (2014). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you