Free Access
Volume 53, Number 6, November-December 2019
Page(s) 2047 - 2080
Published online 10 December 2019
  1. S. Alinhac and P. Gérard, Pseudo-differential operators and the Nash-Moser theorem. In: Vol. 82 of Graduate Studies in Mathematics. Translated from the 1991 French original. American Mathematical Society, Providence, RI (2007). [CrossRef] [Google Scholar]
  2. M. Arioli and M. Benzi, A finite element method for quantum graphs. IMA J. Numer. Anal. 38 (2018) 1119–1163. [CrossRef] [Google Scholar]
  3. G. Berkolaiko, R. Carlson, S.A. Fulling and P. Kuchment, Quantum graphs and their applications. In: Vol. 415 of Contemporary Mathematics. American Mathematical Society, Providence, RI (2006) 97–120. [Google Scholar]
  4. S. Bertoluzza, A. Decoene, L. Lacouture and S. Martin, Local error estimates of the finite element method for an elliptic problem with a Dirac source term. Numer. Method. Part. Differ. Equ. 34 (2018) 97–120. [CrossRef] [Google Scholar]
  5. T.R. Blake and J.F. Gross, Analysis of coupled intra- and extraluminal flows for single and multiple capillaries. Math. Biosci. 59 (1982) 173–206. [Google Scholar]
  6. W. Boon, J. Nordbotten and J. Vatne, Functional analysis and exterior calculus on mixed-dimensional geometries, Technical Report, Cornell University Library. Preprint arXiv:1710.00556v3 (2018). [Google Scholar]
  7. M. Braack and A. Ern, A posteriori control of modeling errors and discretization errors. Multiscale Model. Simul. 1 (2003) 221–238. [Google Scholar]
  8. S.C. Brenner, Poincaré-Friedrichs inequalities for piecewise H1 functions. SIAM J. Numer. Anal. 41 (2003) 306–324. [Google Scholar]
  9. L. Cattaneo and P. Zunino, A computational model of drug delivery through microcirculation to compare different tumor treatments. Int. J. Numer. Method. Biomed. Eng. 30 (2014) 1347–1371. [CrossRef] [PubMed] [Google Scholar]
  10. L. Cattaneo and P. Zunino, Computational models for fluid exchange between microcirculation and tissue interstitium. Netw. Heterog. Media 9 (2014) 135–159. [CrossRef] [Google Scholar]
  11. D. Cerroni, F. Laurino and P. Zunino, Mathematical analysis, finite element approximation and numerical solvers for the interaction of 3D reservoirs with 1D wells. GEM – Int. J. Geomath. 10 (2019) 4. [CrossRef] [Google Scholar]
  12. C. D’Angelo, Multi scale modelling of metabolism and transport phenomena in living tissues. Ph.D. thesis, EPFL, Lausanne (2007). [Google Scholar]
  13. C. D’Angelo, Finite element approximation of elliptic problems with Dirac measure terms in weighted spaces: applications to one- and three-dimensional coupled problems. SIAM J. Numer. Anal. 50 (2012) 194–215. [Google Scholar]
  14. C. D’Angelo and A. Quarteroni, the coupling of 1D and 3D diffusion-reaction equations. Application to tissue perfusion problems. Math. Model. Method. Appl. Sci. 18 (2008) 1481–1504. [CrossRef] [MathSciNet] [Google Scholar]
  15. A. Ern and J.-L. Guermond, Theory and practice of finite elements. In: Vol. 159 of Applied Mathematical Sciences. Springer-Verlag, New York (2004). [CrossRef] [Google Scholar]
  16. J.F. Bonder and J.D. Rossi, Asymptotic behavior of the best Sobolev trace constant in expanding and contracting domains. Commun. Pure Appl. Anal. 1 (2002) 359–378. [CrossRef] [Google Scholar]
  17. G.J. Fleischman, T.W. Secomb and J.F. Gross, The interaction of extravascular pressure fields and fluid exchange in capillary networks. Math. Biosci. 82 (1986) 141–151. [Google Scholar]
  18. G.J. Flieschman, T.W. Secomb and J.F. Gross, Effect of extravascular pressure gradients on capillary fluid exchange. Math. Biosci. 81 (1986) 145–164. [Google Scholar]
  19. I. Gansca, W.F. Bronsvoort, G. Coman and L. Tambulea, Self-intersection avoidance and integral properties of generalized cylinders. Comput. Aided Geom. Design 19 (2002) 695–707. [CrossRef] [Google Scholar]
  20. D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order. In: Classics in Mathematics. Reprint of the 1998 edition. Springer-Verlag, Berlin (2001). [Google Scholar]
  21. I. Gjerde, K. Kumar, J.M. Nordbotten and B. Wohlmuth, Splitting method for elliptic equations with line sources. ESAIM: M2AN 53 (2019) 1715–1739. [CrossRef] [EDP Sciences] [Google Scholar]
  22. W. Gong, G. Wang and N. Yan, Approximations of elliptic optimal control problems with controls acting on a lower dimensional manifold. SIAM J. Control Optim. 52 (2014) 2008–2035. [Google Scholar]
  23. T. Koch, K. Heck, N. Schrder, H. Class and R. Helmig, A new simulation framework for soilroot interaction, evaporation, root growth, and solute transport. Vadose Zone J. 17 (2018) 0210. [Google Scholar]
  24. T. Köppl, E. Vidotto and B. Wohlmuth, A local error estimate for the Poisson equation with a line source term. In: Numerical Mathematics and Advanced Applications ENUMATH 2015. Springer (2016) 421–429. [CrossRef] [Google Scholar]
  25. T. Köppl and B. Wohlmuth, Optimal a priori error estimates for an elliptic problem with Dirac right-hand side. SIAM J. Numer. Anal. 52 (2014) 1753–1769. [Google Scholar]
  26. T. Köppl, E. Vidotto, B. Wohlmuth and P. Zunino, Mathematical modeling, analysis and numerical approximation of second-order elliptic problems with inclusions. Math. Model. Method. Appl. Sci. 28 (2018) 953–978. [CrossRef] [Google Scholar]
  27. M. Kuchta, M. Nordaas, J.C.G. Verschaeve, M. Mortensen and K.-A. Mardal, Preconditioners for saddle point systems with trace constraints coupling 2D and 1D domains. SIAM J. Sci. Comput. 38 (2016) B962–B987. [Google Scholar]
  28. M. Kuchta, K.-A. Mardal and M. Mortensen, Preconditioning trace coupled 3D–1D systems using fractional Laplacian. Numer. Method. Partial Differ. Equ. 35 (2019) 375–393. [CrossRef] [Google Scholar]
  29. J.R. Kuttler and V.G. Sigillito, An inequality of a Stekloff eigenvalue by the method of defect. Proc. Am. Math. Soc. 20 (1969) 357–360. [Google Scholar]
  30. M. Lesinigo, C. D’Angelo and A. Quarteroni, A multiscale Darcy-Brinkman model for fluid flow in fractured porous media. Numer. Math. 117 (2011) 717–752. [Google Scholar]
  31. M. Nabil, P. Decuzzi and P. Zunino, Modelling mass and heat transfer in nano-based cancer hyperthermia. R. Soc. Open Sci. 2 (2015) 150447. [CrossRef] [PubMed] [Google Scholar]
  32. M. Nabil and P. Zunino, A computational study of cancer hyperthermia based on vascular magnetic nanoconstructs. R. Soc. Open Sci. 3 (2016) 160287. [CrossRef] [PubMed] [Google Scholar]
  33. D. Notaro, L. Cattaneo, L. Formaggia, A. Scotti and P. Zunino, A Mixed Finite Element Method for Modeling the Fluid Exchange Between Microcirculation and Tissue Interstitium. Springer International Publishing (2016) 3–25. [Google Scholar]
  34. L.E. Payne and H.F. Weinberger, An optimal Poincaré inequality for convex domains. Arch. Ration. Mech. Anal. 5 (1960) 286–292. [Google Scholar]
  35. D.W. Peaceman, Interpretation of well-block pressures in numerical reservoir simulation with nonsquare grid blocks and anisotropic permeability. Soc. Petrol. Eng. J. 23 (1983) 531–543. [CrossRef] [Google Scholar]
  36. D.W. Peaceman, Interpretation of well-block pressures in numerical reservoir simulation. Soc. Petrol. Eng. AIME J. 18 (1978) 183–194. [CrossRef] [Google Scholar]
  37. L. Possenti, G. Casagrande, S. Di Gregorio, P. Zunino and M.L. Costantino, Numerical simulations of the microvascular fluid balance with a non-linear model of the lymphatic system. Microvasc. Res. 122 (2019) 101–110. [Google Scholar]
  38. L. Possenti, S. di Gregorio, F.M. Gerosa, G. Raimondi, G. Casagrande, M.L. Costantino and P. Zunino, A computational model for microcirculation including Fahraeus-Lindqvist effect, plasma skimming and fluid exchange with the tissue interstitium. Int. J. Numer. Method. Biomed. Eng. 35 (2019) e3165. [CrossRef] [PubMed] [Google Scholar]
  39. A. Quarteroni, A. Veneziani and C. Vergara, Geometric multiscale modeling of the cardiovascular system, between theory and practice. Comput. Methods Appl. Mech. Eng. 302 (2016) 193–252. [Google Scholar]
  40. G. Raimondi, Computational models for root water uptake. Master’s thesis, Politecnico di Milano (2017). [Google Scholar]
  41. S.A. Sauter and R. Warnke, Extension operators and approximation on domains containing small geometric details. East-West J. Numer. Math. 7 (1999) 61–77. [Google Scholar]
  42. T. Secomb, R. Hsu, E. Park and M. Dewhirst, Green’s function methods for analysis of oxygen delivery to tissue by microvascular networks. Ann. Biomed. Eng. 32 (2004) 1519–1529. [CrossRef] [PubMed] [Google Scholar]
  43. M. Solomyak, On approximation of functions from Sobolev spaces on metric graphs. J. Approx. Theor. 121 (2003) 199–219. [CrossRef] [Google Scholar]
  44. A.-K. Tornberg and B. Engquist, Numerical approximations of singular source terms in differential equations. J. Comput. Phys. 200 (2004) 462–488. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you