Free Access
Issue
ESAIM: M2AN
Volume 53, Number 6, November-December 2019
Page(s) 2025 - 2045
DOI https://doi.org/10.1051/m2an/2019048
Published online 29 November 2019
  1. B. Adcock, A. Bao and S. Brugiapaglia, Correcting for unknown errors in sparse high-dimensional function approximation. (submitted, 2017). [Google Scholar]
  2. B. Adcock, S. Brugiapaglia and C.G. Webster, Compressed sensing approaches for polynomial approximation of high-dimensional functions. In: Compressed Sensing and its Applications, Springer International Publishing, Basel, Switzerland (2018) 93–124. [Google Scholar]
  3. B. Adcock, Infinite-dimensional # minimization and function approximation from pointwise data. Construct. Approx. 45 (2017) 345–390. [CrossRef] [Google Scholar]
  4. B. Adcock, Infinite-dimensional compressed sensing and function interpolation, Found. Comput. Math. 18 (2018) 661–701. [CrossRef] [Google Scholar]
  5. I. Babuška, F. Nobile and R. Tempone, A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 45 (2007) 1005–1034. [Google Scholar]
  6. M. Bachmayr, A. Cohen, R. DeVore and G. Migliorati, Sparse polynomial approximation of parametric elliptic PDEs. Part II: lognormal coefficients. ESAIM: M2AN 51 (2017) 341–363. [CrossRef] [EDP Sciences] [Google Scholar]
  7. J. Bäck, F. Nobile, L. Tamellini and R. Tempone, Convergence of quasi-optimal stochastic Galerkin methods for a class of PDEs with random coefficients. Comput. Math. Appl. 67 (2014) 732–751. [Google Scholar]
  8. J. Bäck, R. Tempone, F. Nobile and L. Tamellni, On the optimal polynomial approximation of stochastic PDEs by Galerkin and collocation methods. Math. Models Methods Appl. Sci. 22 (2012). [Google Scholar]
  9. J. Bäck, F. Nobile, L. Tamellini and R. Tempone, Stochastic spectral Galerkin and collocation methods for PDEs with random coefficients: A numerical comparison, edited by J.S. Hesthaven and E.M. Rønquist. Spectral and High Order Methods for Partial Differential Equations. In: Vol. 76 Lecture Notes in Computational Science and Engineering. Springer, Berlin, Heidelberg (2011) 43–62. [CrossRef] [Google Scholar]
  10. H.H. Bauschke and P.L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer International Publishing, Basel, Switzerland (2010). [Google Scholar]
  11. M. Bieri, R. Andreev and C. Schwab, Sparse tensor discretization of elliptic sPDEs. SIAM J. Sci. Comput. 31 (2009) 4281–4304. [Google Scholar]
  12. L.M. Bregman, The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. Math. Phys. 7 (1967) 200–217. [CrossRef] [Google Scholar]
  13. S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods.. In Vol. 15 of Texts in Applied Mathematics. Springer-Verlag, New York (1994). [CrossRef] [Google Scholar]
  14. S. Brugiapaglia and B. Adcock, Robustness to unknown error in sparse regularization. IEEE Trans. Inf. Theory 64 (2018) 6638–6661. [Google Scholar]
  15. E.J. Candès, J. Romberg and T. Tao, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52 (2006) 489–509. [Google Scholar]
  16. A. Chkifa, A. Cohen, R. DeVore and C. Schwab, Sparse adaptive Taylor approximation algorithms for parametric and stochastic elliptic PDEs. Modél. Math. Anal. Numér. 47 (2013) 253–280. [CrossRef] [EDP Sciences] [Google Scholar]
  17. A. Chkifa, A. Cohen, G. Migliorati, F. Nobile and R. Tempone, Discrete least squares polynomial approximation with random evaluations – Application to parametric and stochastic elliptic PDEs. ESAIM: M2AN 49 (2015) 815–837. [CrossRef] [EDP Sciences] [Google Scholar]
  18. A. Chkifa, A. Cohen and C. Schwab, Breaking the curse of dimensionality in sparse polynomial approximation of parametric PDEs. J. Math. Pures Appl. 103 (2015) 400–428. [Google Scholar]
  19. A. Chkifa, N. Dexter, H. Tran and C.G. Webster, Polynomial approximation via compressed sensing of high-dimensional functions on lower sets. Math. Comput. 87 (2018) 1415–1450. [Google Scholar]
  20. A. Cohen, M.A. Davenport and D. Leviatan, On the stability and accuracy of least squares approximations. Found. Comput. Math. 13 (2013) 819–834. [CrossRef] [MathSciNet] [Google Scholar]
  21. A. Cohen, R. DeVore and C. Schwab, Convergence rates of best N-term Galerkin approximations for a class of elliptic sPDEs. Found. Comput. Math 10 (2010) 615–646. [CrossRef] [MathSciNet] [Google Scholar]
  22. A. Cohen, R. DeVore and C. Schwab, Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDEs. Anal. Appl. 9 (2011) 11–47. [CrossRef] [MathSciNet] [Google Scholar]
  23. P.L. Combettes and V.R. Wajs, Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4 (2005) 1168–1200. [Google Scholar]
  24. S.F. Cotter, B.D. Rao and K. Kreutz-Delgado, Sparse solutions to linear inverse problems with multiple measurement vectors. IEEE Trans. Signal Proces. 53 (2005) 2477–2488. [CrossRef] [Google Scholar]
  25. I. Daubechies, M. Defrise and C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57 (2004) 1413–1457. [Google Scholar]
  26. R. DeVore, Nonlinear approximation. Acta. Numer. 7 (1998) 51–150. [CrossRef] [Google Scholar]
  27. N. Dexter, H. Tran and C.G. Webster, On the strong convergence of forward-backward splitting in reconstructing jointly sparse signals. (Submitted2017). [Google Scholar]
  28. N. Dexter, C.G. Webster and G. Zhang, Explicit cost bounds of stochastic Galerkin approximations for parameterized PDEs with random coefficients. Comput. Math. Appl. 71 (2016) 2231–2256. [Google Scholar]
  29. D.L. Donoho, Compressed sensing. IEEE Trans. Inf. Theory 52 (2006) 1289–1306. [Google Scholar]
  30. A. Doostan and H. Owhadi, A non-adapted sparse approximation of PDEs with stochastic inputs. J. Comput. Phys. 230 (2011) 3015–3034. [Google Scholar]
  31. Y. Eldar and H. Rauhut, Average case analysis of multichannel sparse recovery using convex relaxation. IEEE Trans. Inf. Theory 56 (2010) 505–519. [Google Scholar]
  32. H.C. Elman, C.W. Miller, E.T. Phipps and R.S. Tuminaro, Assessment of collocation and Galerkin approaches to linear diffusion equations with random data. Int. J. Uncertain. Quantif. 1 (2011) 19–33. [Google Scholar]
  33. S. Foucart and, H. Rauhut, A Mathematical Introduction to Compressive Sensing. In: Applied and Numerical Harmonic Analysis. Birkhäuser /Springer, New York (2013). [CrossRef] [Google Scholar]
  34. R. Ghanem and P. Spanos, Stochastic Finite Elements: A Spectral Approach. 2nd edition. Dover, New York (2002). [Google Scholar]
  35. R. Gribonval, H. Rauhut, K. Schnass and P. Vandergheynst, Atoms of all channels, unite! Average case analysis of multi-channel sparse recovery using greedy algorithms. J. Fourier Anal. Appl. 14 (2008) 655–687. [Google Scholar]
  36. M. Gunzburger, C.G. Webster and G. Zhang, Stochastic finite element methods for partial differential equations with random input data. Acta Numer. 23 (2014) 521–650. [CrossRef] [Google Scholar]
  37. L. Guo, A. Narayan and T. Zhou, A gradient enhanced 1-minimization for sparse approximation of polynomial chaos expansions. J. Comput. Phys. 367 (2018) 49–64. [Google Scholar]
  38. E. Hale, W. Yin andY. Zhang, Fixed-point continuation for 1-minimization: Methodology and convergence. SIAM J. Optim. 19 (2008) 1107–1130. [Google Scholar]
  39. E. Hale, W. Yin and Y. Zhang, Fixed-point continuation applied to compressed sensing: Implementation and numerical experiments. J. Comput. Math. 28 (2010) 170–194. [Google Scholar]
  40. J. Hampton and A. Doostan, Compressive sampling of polynomial chaos expansions: Convergence analysis and sampling strategies. J. Comput. Phys. 280 (2015) 363–386. [Google Scholar]
  41. J. Hampton and A. Doostan, Compressive sampling of polynomial chaos expansions: Convergence analysis and sampling strategies. J. Comput. Phys. 280 (2015) 363–386. [Google Scholar]
  42. M. Hansen and C. Schwab, Analytic regularity and nonlinear approximation of a class of parametric semilinear elliptic pdes. Math. Nachr. 286 (2013) 832–860. [CrossRef] [Google Scholar]
  43. M. Hansen and C. Schwab, Sparse adaptive approximation of high dimensional parametric initial value problems. Vietnam J. Math. 41 (2013) 181–215. [CrossRef] [Google Scholar]
  44. V.H. Hoang and C. Schwab, Sparse Tensor Galerkin Discretizations for parametric and random parabolic PDEs – analytic regularity and generalized polynomial chaos approximation. SIAM J. Math. Anal. 45 (2013) 3050–3083. [CrossRef] [Google Scholar]
  45. V.H. Hoang and C. Schwab, Regularity and generalized polynomial chaos approximation of parametric and random 2nd order hyperbolic partial differential equations. Anal. Appl. 10 (2012) 295–326. [CrossRef] [Google Scholar]
  46. V.H. Hoang and C. Schwab, N-term Wiener Chaos Approximation Rates for elliptic PDEs with lognormal Gaussian random inputs. Math. Models Methods Appl. Sci. 24 (2014) 797–826. [Google Scholar]
  47. J. Jakeman, A. Narayan and T. Zhou, A generalized sampling and preconditioning scheme for sparse approximation of polynomial chaos expansions. SIAM J. Sci. Comput. 39 (2017) 1114–1144. [Google Scholar]
  48. M.J. Lai and Y. Liu, The null space property for sparse recovery from multiple measurement vectors. Appl. Comput. Harmonic Anal. 30 (2011) 402–406. [CrossRef] [Google Scholar]
  49. O.P. Le Matre and O.M. Knio, Spectral Methods for uncertainty quantification With applications to computational fluid dynamics. In: Scientific Computation. Springer, Berlin (2010). [CrossRef] [Google Scholar]
  50. L. Mathelin and K. Gallivan, A compressed sensing approach for partial differential equations with random input data. Commun. Comput. Phys. 12 (2012) 919–954. [Google Scholar]
  51. M. Mishali and Y. Eldar, Reduce and boost: Recovering arbitrary sets of jointly sparse vectors. IEEE Trans. Signal Proces. 56 (2008) 4692–4702. [CrossRef] [Google Scholar]
  52. F. Nobile, R. Tempone and C. Webster, A sparse grid stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 46 (2008) 2309–2345. [Google Scholar]
  53. F. Nobile, R. Tempone and C.G. Webster, An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46 (2008) 2411–2442. [Google Scholar]
  54. S. Osher, M. Burger, D. Goldfarb, J. Xu and W. Yin, An iterated regularization method for total variation-based image restoration. Multiscale Model. Simul. 4 (2005) 460–489. [Google Scholar]
  55. J. Peng, J. Hampton and A. Doostan, On polynomial chaos expansion via gradient-enhanced 1-minimization. J. Comput. Phys. 310 (2016) 440–458. [Google Scholar]
  56. J. Peng, J. Hampton and A. Doostan, A weighted 1-minimization approach for sparse polynomial chaos expansions. J. Comput. Phys. 267 (2014) 92–111. [Google Scholar]
  57. H. Rauhut and R. Ward, Sparse legendre expansions via 1-minimization. J. Approx. Theory 164 (2012) 517–533. [Google Scholar]
  58. H. Rauhut and R. Ward, Interpolation via weighted 1-minimization. Appl. Comput. Harmonic Anal. (submitted, 2015). [Google Scholar]
  59. H. Rauhut and C. Schwab, Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comput. 86 (2017) 661–700. [Google Scholar]
  60. M.K. Stoyanov and C.G. Webster, A dynamically adaptive sparse grid method for quasi-optimal interpolation of multidimensional functions. Comput. Math. Appl. 71 (2016) 2449–2465. [Google Scholar]
  61. R.A. Todor and C. Schwab, Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients. IMA J. Numer. Anal. 27 (2007) 232–261. [CrossRef] [MathSciNet] [Google Scholar]
  62. H. Tran, C.G. Webster and G. Zhang, Analysis of quasi-optimal polynomial approximations for parameterized PDEs with deterministic and stochastic coefficients. Numer. Math. 1372017 (2017) 451–493. [Google Scholar]
  63. E. van der Berg and M. Friedlander, Theoretical and empirical results for recovery from multiple measurements. IEEE Trans. Inf. Theory 56 (2010). [Google Scholar]
  64. R. Ward, Compressed sensing with cross validation. IEEE Trans. Inf. Theory 55 (2009) 5773–5782. [Google Scholar]
  65. C.G. Webster, Sparse grid stochastic collocation techniques for the numerical solution of partial differential equations with random input data. Ph.D. thesis, Florida State University (2007). [Google Scholar]
  66. N. Wiener, The homogeneous chaos. Am. J. Math. 60 (1938) 897–936. [CrossRef] [MathSciNet] [Google Scholar]
  67. D. Xiu and G.E. Karniadakis, Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos. Comput. Methods Appl. Mech. Eng. 191 (2002) 4927–4948. [Google Scholar]
  68. D. Xiu and G.E. Karniadakis, The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24 (2002) 619–644. [Google Scholar]
  69. L. Yan, L. Guo and D. Xiu, Stochastic collocation algorithms using 1-minimization. Int. J. Uncertain. Quantif. 2 (2012) 279–293. [Google Scholar]
  70. X. Yang and G.E. Karniadakis, Reweighted 1-minimization method for stochastic elliptic differential equations. J. Comput. Phys. 248 (2013) 87–108. [Google Scholar]
  71. W. Yin, S. Osher, D. Goldfarb and J. Darbon, Bregman iterative algorithms for 1-minimization with applications to compressed sensing. SIAM J. Imag. Sci. 1 (2008) 143–168. [CrossRef] [Google Scholar]
  72. W. Yin and S. Osher, Error forgetting of Bregman iteration. J. Sci. Comput. 54 (2013) 684–695. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you