Free Access
Issue
ESAIM: M2AN
Volume 53, Number 6, November-December 2019
Page(s) 1915 - 1955
DOI https://doi.org/10.1051/m2an/2019061
Published online 24 October 2019
  1. G. Acosta, T. Apel, R. Durán and A. Lombardi, Error estimates for Raviart-Thomas interpolation of any order on anisotropic tetrahedra. Math. Comput. 80 (2011) 141–163. [Google Scholar]
  2. I. Ambartsumyan, E. Khattatov, I. Yotov and P. Zunino, A Lagrange multiplier method for a Stokes-Biot fluid-poroelastic structure interaction model. Numer. Math. 140 (2018) 513–553. [Google Scholar]
  3. S. Badia, A. Quaini and A. Quarteroni, Coupling Biot and Navier-Stokes equations for modelling fluid-poroelastic media interaction. J. Comput. Phys. 228 (2009) 7986–8014. [Google Scholar]
  4. G.S. Beavers and D.D. Joseph, Boundary conditions at a naturally impermeable wall. J. Fluid. Mech. 30 (1967) 197–207. [Google Scholar]
  5. M. Biot, General theory of three-dimensional consolidation. J. Appl. Phys. 12 (1941) 155–164. [Google Scholar]
  6. R.B. Bird, R.C. Armstrong, O. Hassager and C.F. Curtiss, In: Vol. 1 of Dynamics of Polymeric Liquids. Wiley New York (1977). [Google Scholar]
  7. D. Boffi and L. Gastaldi, Analysis of finite element approximation of evolution problems in mixed form. SIAM J. Numer. Anal. 42 (2004) 1502–1526. [Google Scholar]
  8. D. Boffi, F. Brezzi and M. Fortin, Mixed finite element methods and applications. In: Vol. 44 of Springer Series in Computational Mathematics. Springer, Heidelberg (2013). [CrossRef] [Google Scholar]
  9. F. Brezzi, D. Boffi, L. Demkowicz, R.G. Durán, R.S. Falk and M. Fortin, Mixed Finite Elements, Compatibility Conditions, and Applications. Springer (2008). [Google Scholar]
  10. M. Bukac, I. Yotov, R. Zakerzadeh and P. Zunino, Partitioning strategies for the interaction of a fluid with a poroelastic material based on a Nitsche’s coupling approach. Comput. Methods Appl. Mech. Eng. 292 (2015) 138–170. [Google Scholar]
  11. M. Bukac, I. Yotov and P. Zunino, An operator splitting approach for the interaction between a fluid and a multilayered poroelastic structure. Numer. Methods Partial Differ. Equ. 31 (2015) 1054–1100. [Google Scholar]
  12. M. Bukac, I. Yotov and P. Zunino, Dimensional model reduction for flow through fractures in poroelastic media. ESAIM: M2AN 51 (2017) 1429–1471. [EDP Sciences] [Google Scholar]
  13. S. Caucao, G.N. Gatica, R. Oyarzúa and I. Sebestová, A fully-mixed finite element method for the Navier–Stokes/Darcy coupled problem with nonlinear viscosity. J. Numer. Math. 25 (2017) 55–88. [CrossRef] [Google Scholar]
  14. A. Cesmelioglu, Analysis of the coupled Navier–Stokes/Biot problem. J. Math. Anal. Appl. 456 (2017) 970–991. [Google Scholar]
  15. A. Cesmelioglu, H. Lee, A. Quaini, K. Wang and S.-Y. Yi, Optimization-based decoupling algorithms for a fluid-poroelastic system. In: Topics in Numerical Partial Differential Equations and Scientific Computing. Vol. 160 of IMA Vol. Math. Appl. Springer, New York (2016) 79–98. [CrossRef] [Google Scholar]
  16. S.-S. Chow and G.F. Carey, Numerical approximation of generalized Newtonian fluids using Powell–Sabin–Heindl elements: I. Theoretical estimates. Int. J. Numer. Methods Fluids 41 (2003) 1085–1118. [Google Scholar]
  17. M. Dauge, Elliptic boundary value problems on corner domains. Smoothness and asymptotics of solutions. In: Vol. 1341 of Lecture Notes in Mathematics. Springer-Verlag, Berlin (1988). [Google Scholar]
  18. D. Di Pietro and J. Droniou, A hybrid high-order method for Leray-Lions elliptic equations on general meshes. Math. Comput. 86 (2017) 2159–2191. [Google Scholar]
  19. M. Discacciati, E. Miglioand A. Quarteroni, Mathematical and numerical models for coupling surface and groundwater flows. Appl. Numer. Math. 43 (2002) 57–74. [Google Scholar]
  20. S. Domnguez, G.N. Gatica, A. Márquez and S. Meddahi, A primal-mixed formulation for the strong coupling of quasi-Newtonian fluids with porous media. Adv. Comput. Math. 42 (2016) 675–720. [Google Scholar]
  21. R. Durán, Error analysis in Lp, 1 ≤ p ≤ ∞, for mixed finite element methods for linear and quasi-linear elliptic problems. ESAIM: M2AN 22 (1988) 371–387. [CrossRef] [EDP Sciences] [Google Scholar]
  22. V.J. Ervin, E.W. Jenkins and S. Sun, Coupled generalized nonlinear Stokes flow with flow through a porous medium. SIAM J. Numer. Anal. 47 (2009) 929–952. [Google Scholar]
  23. V.J. Ervin, E.W. Jenkins and S. Sun, Coupling nonlinear Stokes and Darcy flow using mortar finite elements. Appl. Numer. Math. 61 (2011) 1198–1222. [Google Scholar]
  24. L. Formaggia, A. Quarteroni and A. Veneziani. In: Vol. 1 of Cardiovascular Mathematics: Modeling and Simulation of the Circulatory System. Springer Science & Business Media (2010). [Google Scholar]
  25. S. Frei, B. Holm, T. Richter, T. Wick and H. Yang, Fluid-structure interaction: modeling, adaptive discretisations and solvers, In: Vol. 20 of Radon Series on Computational and Applied Mathematics. De Gruyter(2017) . [CrossRef] [Google Scholar]
  26. G.P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-state Problems. Springer Science & Business Media (2011). [Google Scholar]
  27. G.P. Galdi and R. Rannacher, Fundamental trends in fluid-structure interaction, Vol. 1 of Contemporary Challenges in Mathematical Fluid Dynamics and Its Applications. World Scientific Publishing Co., Pte. Ltd., Hackensack, NJ, 2010. [CrossRef] [Google Scholar]
  28. V. Girault, M.F. Wheeler, B. Ganis and M.E. Mear, A lubrication fracture model in a poro-elastic medium. Math. Models Methods Appl. Sci. 25 (2015) 587–645. [Google Scholar]
  29. P. Grisvard, Elliptic Problems in Nonsmooth Domains. SIAM (2011). [CrossRef] [Google Scholar]
  30. B. Guerciotti and C. Vergara, Computational comparison between Newtonian and non-Newtonian blood rheologies in stenotic vessels. In: Biomedical Technology. Vol 84 of Lecture Notes in Applied and Computational Mechanics. Springer (2018) 169–183. [CrossRef] [Google Scholar]
  31. F. Hecht, New development in FreeFem++. J. Numer. Math. 20 (2012) 251–265. [CrossRef] [MathSciNet] [Google Scholar]
  32. J. Janela, A. Moura and A. Sequeira, A 3D non-Newtonian fluid–structure interaction model for blood flow in arteries. J. Comput. Appl. Math. 234 (2010) 2783–2791. [Google Scholar]
  33. W.J. Layton, F. Schieweck and I. Yotov, Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40 (2003) 2195–2218. [Google Scholar]
  34. S. Lee, A. Mikelić, M.F. Wheeler and T. Wick, Phase-field modeling of proppant-filled fractures in a poroelastic medium. Comput. Methods Appl. Mech. Eng. 312 (2016) 509–541. [Google Scholar]
  35. X. Lopez, P.H. Valvatne and M.J. Blunt, Predictive network modeling of single-phase non-Newtonian flow in porous media. J. Colloid Interface Sci. 264 (2003) 256–265. [Google Scholar]
  36. J. Necas, J. Málek, M. Rokyta and M. Ruzicka, Vol. 13 of Weak and Measure-valued Solutions to Evolutionary PDEs. CRC Press (1996). [Google Scholar]
  37. R.G. Owens and T.N. Phillips, Vol. 14 of Computational Rheology. World Scientific (2002). [CrossRef] [Google Scholar]
  38. J.R.A. Pearson and P.M.J. Tardy, Models for flow of non-Newtonian and complex fluids through porous media. J. Non-Newton. Fluid Mech. 102 (2002) 447–473. [CrossRef] [Google Scholar]
  39. M. Renardy and R.C. Rogers, Vol. 13 of An Introduction to Partial Differential Equations. Springer Science & Business Media (2006). [Google Scholar]
  40. B. Rivière and I. Yotov, Locally conservative coupling of Stokes and Darcy flows. SIAM J. Numer. Anal. 42 (2005) 1959–1977. [Google Scholar]
  41. P.G. Saffman, On the boundary condition at the surface of a porous media. Stud. Appl. Math. 50 (1971) 93–101. [Google Scholar]
  42. D. Sandri, Sur l’approximation numérique des écoulements quasi-newtoniens dont la viscosité suit la loi puissance ou la loi de Carreau. ESAIM: M2AN 27 (1993) 131–155. [CrossRef] [EDP Sciences] [Google Scholar]
  43. L.R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54 (1990) 483–493. [Google Scholar]
  44. R.E. Showalter, Poroelastic filtration coupled to Stokes flow. Control Theory of Partial Differential Equations. Vol. 242 of Lect. Notes Pure Appl. Math. Chapman & Hall/CRC, Boca Raton, FL (2005) 229–241. [CrossRef] [Google Scholar]
  45. R.E. Showalter, Nonlinear degenerate evolution equations in mixed formulation. SIAM J. Math. Anal. 42 (2010) 2114–2131. [CrossRef] [Google Scholar]
  46. R.E. Showalter, Vol. 49 of Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. American Mathematical Soc. (2013). [CrossRef] [Google Scholar]
  47. D. Vassilev, C. Wang and I. Yotov, Domain decomposition for coupled Stokes and Darcy flows. Comput. Methods Appl. Mech. Eng. 268 (2014) 264–283. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you