Free Access
Volume 53, Number 6, November-December 2019
Page(s) 1893 - 1914
Published online 18 October 2019
  1. T. Apel, A.-M. Sändig and J.R. Whiteman, Graded mesh refinement and error estimates for finite element solutions of elliptic boundary value problems in non-smooth domains. Math. Methods Appl. Sci. 19 (1996) 63–85. [Google Scholar]
  2. T. Apel, S. Nicaiseand J. Schöberl, A non-conforming finite element method with anisotropic mesh grading for the Stokes problem in domains with edges. IMA J. Numer. Anal. 21 (2001) 843–856. [CrossRef] [MathSciNet] [Google Scholar]
  3. J.D. Arregui Mena, L. Margetts, L. Evans, D.V. Griffiths, A. Shterenlikht, L. Cebamanos and P.M. Mummery, The stochastic finite element method for nuclear applications. ECCOMAS Congr. 2016 (2016). [Google Scholar]
  4. I. Babuška, Finite element method for domains with corners. Computing 6 (1970) 264–273. [CrossRef] [Google Scholar]
  5. I. Babuška and T. Strouboulis, The finite element method and its reliability. In: Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York (2001). [Google Scholar]
  6. G.A. Baker, J.H. Bramble and V. Thomée, Single step Galerkin approximations for parabolic problems. Math. Comput. 31 (1977) 818–847. [Google Scholar]
  7. J. Banasiakand G.F. Roach, On corner singularities of solutions to mixed boundary-value problems for second-order elliptic and parabolic equations. Proc.: Math. Phys. Sci. 433 (1991) 209–217. [CrossRef] [Google Scholar]
  8. S. Bartels, Numerical approximation of partial differential equations. In: Texts in Applied Mathematics. Springer International Publishing (2016). [CrossRef] [Google Scholar]
  9. H. Blum, The influence of reentrant corners in the numerical approximation of viscous flow problems, in Numerical Treatment of the Navier-Stokes Equations (Kiel, 1989). Vol. 30 of Notes on Numerical Fluid Mechanics. Vieweg, Braunschweig (1990), 37–46. [CrossRef] [Google Scholar]
  10. H. Blum and M. Dobrowolski, On finite element methods for elliptic equations on domains with corners. Computing 28 (1982) 53–63. [CrossRef] [MathSciNet] [Google Scholar]
  11. D. Boffi, F. Brezzi and M. Fortin, Mixed finite element methods and applications. Vol. 44 of Springer Series in Computational Mathematics. Springer, Heidelberg (2013). [CrossRef] [Google Scholar]
  12. D. Braess. Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics. 3rd ed., Cambridge University Press (2007). [CrossRef] [Google Scholar]
  13. P. Brenner, M. Crouzeix and V. Thomée, Single step methods for inhomogeneous linear differential equations in Banach space. RAIRO. Analyse Numérique 16 (1982) 5–26. [CrossRef] [Google Scholar]
  14. S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods, 3rd ed.. Vol. 15 of Texts in Applied Mathematics. Springer, New York (2008). [CrossRef] [Google Scholar]
  15. Y.A. Cengel and A.J. Ghajar. Heat and Mass Transfer: Fundamentals and Applications, 5th edition. McGraw-Hill Education (2014). [Google Scholar]
  16. P. Chatzipantelidis, R.D. Lazarov, V. Thomée and L.B. Wahlbin, Parabolic finite element equations in nonconvex polygonal domains. BIT Numerical Mathematics 46 (2006) 113–143. [Google Scholar]
  17. P.G. Ciarlet and J.L. LionsHandbook of numerical analysis, Vol. II. In: Finite Element Methods (Part 1). North Holland, Amsterdam, New York, Oxford (1991). [Google Scholar]
  18. G. Cohen, P. Joly, J.E. Roberts and N. Tordjman, Higher order triangular finite elements with mass lumping for the wave equation. SIAM J. Numer. Anal. 38 (2001) 2047–2078. [Google Scholar]
  19. J. Douglas and T.F. Dupont, Galerkin methods for parabolic equations. SIAM J. Numer. Anal. 7 (1970) 575–626. [Google Scholar]
  20. H. Egger, U. Rüde and B. Wohlmuth, Energy-corrected finite element methods for corner singularities. SIAM J. Numer. Anal. 52 (2014) 171–193. [Google Scholar]
  21. L.C. Evans, Partial differential equations, 2nd edition. In: Graduate Studies in Mathematics. American Mathematical Society, Providence, R.I. (2010) [CrossRef] [Google Scholar]
  22. G. Fix and N. Nassif, On finite element approximations in time dependent problems. Numer. Math. 19 (1972) 127–135. [Google Scholar]
  23. P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, Boston, 1985. [Google Scholar]
  24. T. Horger, P. Pustejovska and B. Wohlmuth, Higher order energy-corrected finite element methods. Preprint arXiv:1704.05638 (2017). [Google Scholar]
  25. M. Huber, L. John, P. Pustejovska, U. Rüde, C. Waluga and B. WohlmuthSolution techniques for the Stokes system: a priori and a posteriori modifications, resilient algorithms. In: Proceedings 8th International Congress on Industrial and Applied Mathematics. Higher Ed. Press, Beijing (2015) 109–134. [Google Scholar]
  26. L. John, P. Pustejovska, B. Wohlmuth and U. Rüde, Energy-corrected finite element methods for the Stokes system. IMA J. Numer. Anal. 37 (2017) 687–729. [Google Scholar]
  27. L. John, P. Swierczynski and B. Wohlmuth, Energy corrected FEM for optimal Dirichlet boundary control problems. Numer. Math 139 (2018) 913–938. [Google Scholar]
  28. V.A. Kondratiev, Boundary value problems for elliptic equations in domains with conical or angular points. Trans. Moscow Math. Soc. 16 (1967) 227–313. [Google Scholar]
  29. A. Kufner, Weighted Sobolev spaces. A Wiley-Interscience Publication. Translated from the Czech. John Wiley & Sons Inc, New York (1985). [Google Scholar]
  30. H. Lewy, K. Friedrichs and R. Courant, Über die partiellen Differenzengleichungen der mathematischen Physik. Mathematische Annalen 100 (1928) 32–74. [Google Scholar]
  31. J.H. Lienhard IV and J.H. Lienhard V, A Heat Transfer Textbook, 4th edition. Phlogiston Press, Cambridge, MA (2017). [Google Scholar]
  32. M.H. Nguyen and T.A. Nguyen, Regularity of solutions of initial–boundary value problems for parabolic equations in domains with conical points. J. Differ. Equ. 245 (2008) 1801–1818. [Google Scholar]
  33. E. Nonbol, Description of the advanced gas cooled type of reactor (AGR), Nordic Nuclear Safety Research (1996). [Google Scholar]
  34. H. Price and R. Varga, Error bounds for semi-discrete galerkin approximations of parabolic problems with applications to petroleum reservoir mechanics. In: Numerical Solution of Field Problems in Continuum Physics. American Mathematical Society, Providence, R. I (1970) 74–94. [Google Scholar]
  35. U. Rüde, Local corrections for eliminating the pollution effect of reentrant corners, Institut für Informatik, Technische Universtät München (1989). Technical Report TUM-INFO-02-89-I01.. [Google Scholar]
  36. U. Rüde and C. Zenger, On the treatment of singularities in the multigrid method, in: Multigrid Methods II, edited by W. Hackbusch and U. Trottenberg, Vol 1228 of Lecture Notes in Mathematics. Springer Berlin-Heidelberg (1986) 261–271. [CrossRef] [Google Scholar]
  37. U. Rüde, C. Waluga and B. Wohlmuth, Nested newton strategies for energy-corrected finite element methods. SIAM J. Sci. Comput. 36 (2014) A1359–A1383. [Google Scholar]
  38. A.H. Schatz and L.B. Wahlbin, Maximum norm estimates in the finite element method on plane polygonal domains. Part 2, refinements. Math. Comput. 33 (1979) 465–492. [Google Scholar]
  39. G. Strang and G.J. Fix, An Analysis of the Finite Element Method. Wellesley-Cambridge Press (1988). [Google Scholar]
  40. P. Swierczynski and B. WohlmuthMaximum norm estimates for energy-corrected finite element method. Numer. Math. Adv. Appl. ENUMATH 2017 In Vol. 126 of Lecture Notes in Computational Science and Engineering. Springer (2019) [Google Scholar]
  41. V. Thomée, Finite difference methods for linear parabolic equations, in Handbook of Numerical Analysis, edited by P.G. Ciarlet and J.L. Lions, In: Finite Difference Methods 1. North-Holland, Amsterdam (1990). [Google Scholar]
  42. V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. In: Springer Series in Computational Mathematics. Springer-Verlag, New York Inc, Secaucus, NJ, USA (2006). [Google Scholar]
  43. M.F. Wheeler, A priori L2 error estimates for Galerkin approximations to parabolic partial differential equations. SIAM J. Numer. Anal. 10 (1973) 723–759. [Google Scholar]
  44. C. Zenger and H. Gietl, Improved difference schemes for the Dirichlet problem of Poisson’s equation in the neighbourhood of corners. Numer. Math. 30 (1978) 315–332. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you