Free Access
Issue
ESAIM: M2AN
Volume 54, Number 1, January-February 2020
Page(s) 335 - 358
DOI https://doi.org/10.1051/m2an/2019055
Published online 31 January 2020
  1. A.A. Alikhanov, A priori estimates for solutions of boundary value problems for fractional-order equations. Differ. Equ. 46 (2010) 660–666. [CrossRef] [Google Scholar]
  2. J.A.D. Applelby, I. Györi and D.W. Reynolds, On exact convergence rates for solutions of linear systems of Volterra difference equations. J. Diff. Equa. Appl. 12 (2006) 1257–1275. [CrossRef] [Google Scholar]
  3. J.C. Butcher, A stability property of implicit Runge-Kutta methods. BIT Numer. Math. 15 (1975) 358–361. [Google Scholar]
  4. J.C. Butcher, Thirty years of G-stability. BIT Numer. Math. 46 (2006) 479–489. [Google Scholar]
  5. J. Cao, C. Li and Y.Q. Chen, High-order approximation to Caputo derivatives and Caputo-type advection-diffusion equations (II). Fract. Calc. Appl. Anal. 18 (2015) 735–761. [Google Scholar]
  6. W. Cao, Z. Zhang and G.E. Karniadakis, Time-splitting schemes for fractional differential equations I: smooth solutions. SIAM J. Sci. Comput. 37 (2015) A1752–A1776. [Google Scholar]
  7. W. Cao, F. Zeng, Z. Zhang and G.E. Karniadakis, Implicit-explicit difference schemes for nonlinear fractional differential equations with nonsmooth solutions. SIAM J. Sci. Comput. 38 (2016) A3070–A3093. [Google Scholar]
  8. J. Čermák, I. Györi and L. Nechvátal, On explicit stability conditions for a linear fractional difference system. Fract. Calc. Appl. Anal. 18 (2015) 651–672. [Google Scholar]
  9. E. Cuesta, Asymptotic behaviour of the solutions of fractional integro-differential equations and some time discretizations. Discrete Contin. Dyn. Syst. 277–285 (2007). [Google Scholar]
  10. E. Cuesta, C. Lubich and C. Palencia, Convolution quadrature time discretization of fractional diffusion-wave equations. Math. Comput. 75 (2006) 673–696. [Google Scholar]
  11. G. Dahlquist, Error analysis for a class of methods for stiff nonlinear initial value problems. In: Vol. 506 of Numerical Analysis, Lecture Notes in Mathematics. Springer Berlin Heidelberg (1975) 60–74. [Google Scholar]
  12. G. Dahlquist, G-stability is equivalent to A-stability. BIT Numer. Math. 18 (1978) 384–401. [Google Scholar]
  13. K. Diethelm and N.J. Ford, Analysis of fractional differential equations. J. Math. Anal. Appl. 265 (2002) 229–248. [Google Scholar]
  14. K. Diethelm, N.J. Ford and A.D. Freed, A predictor–corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29 (2002) 3–22. [Google Scholar]
  15. P.P.B. Eggermont, Uniform error estimates of Galerkin methods for monotone Abel-Volterra integral equations on the half-line. Math. Comput. 53 (1989) 157–189. [Google Scholar]
  16. L. Galeone and R. Garrappa, On multistep methods for differential equations of fractional order. Mediterr. J. Math. 3 (2006) 565–580. [CrossRef] [MathSciNet] [Google Scholar]
  17. R. Garrappa, On linear stability of predictor-corrector algorithms for fractional differential equations. Int. J. Comput. Math. 87 (2010) 2281–2290. [Google Scholar]
  18. R. Garrappa, Trapezoidal methods for fractional differential equations: theoretical and computational aspects. Math. Comput. Simul. 110 (2015) 96–112. [Google Scholar]
  19. G.H. Gao, Z.Z. Sun and H.W. Zhang, A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259 (2014) 33–50. [Google Scholar]
  20. E. Hairer and G. Wanner, Solving ordinary differential equations II, 2nd edition. In: Vol. 14 of Stiff and Differential-Algebraic Equations. Springer Series in Computational Mathematics. Springer, Berlin (1996). [Google Scholar]
  21. J.K. Hale, Asymptotic Behavior of Dissipative Systems. American Mathematical Society, New York (2010). [CrossRef] [Google Scholar]
  22. A.T. Hill, Global dissipativity for A-stable methods. SIAM J. Numer. Anal. 34 (1997) 119–142. [Google Scholar]
  23. A.R. Humphries and A.M. Stuart, Runge-Kutta methods for dissipative and gradient dynamical systems. SIAM J. Numer. Anal. 31 (1994) 1452–1485. [Google Scholar]
  24. B. Jin, R. Lazarov and Z. Zhou, An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data. IMA J. Numer. Anal. 36 (2016) 197–221. [MathSciNet] [Google Scholar]
  25. B. Jin, R. Lazarov, V. Thomée and Z. Zhou, On nonnegativity preservation in finite element methods for subdiffusion equations. Math. Comput. 86 (2017) 2239–2260. [Google Scholar]
  26. B. Jin, B. Li and Z. Zhou, Correction of high-order BDF convolution quadrature for fractional evolution equations. SIAM J. Sci. Comput. 39 (2017) A3129–A3152. [Google Scholar]
  27. B. Jin, B. Li and Z. Zhou, Numerical analysis of nonlinear subdiffusion equations. SIAM J. Numer. Anal. 56 (2018) 1–23. [Google Scholar]
  28. A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier Science Limited, Amsterdam (2006). [Google Scholar]
  29. N. Kopteva, Error analysis of the L1 method on graded and uniform meshes for a fractional-derivative problem in two and three dimensions. Math. Comput. 88 (2019) 2135–2155. [Google Scholar]
  30. H. Li, J. Cao and C. Li, High-order approximation to Caputo derivatives and Caputo-type advection-diffusion equations (III). J. Comput. Appl. Math. 299 (2016) 159–175. [Google Scholar]
  31. C.P. Li and F.R. Zhang, A survey on the stability of fractional differential equations. Eur. Phys. J. Spec. Top. 193 (2011) 27–47. [Google Scholar]
  32. Y. Li, Y.Q. Chen and I. Podlubny, Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica 45 (2009) 1965–1969. [CrossRef] [Google Scholar]
  33. Y. Lin and C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225 (2007) 1533–1552. [Google Scholar]
  34. C. Lv and C. Xu, Error analysis of a high order method for time-fractional diffusion equations. SIAM J. Sci. Comput. 38 (2016) A2699–A2724. [Google Scholar]
  35. C. Lubich, On the stability of linear multistep methods for Volterra convolution equations. IMA J. Numer. Anal. 3 (1983) 439–465. [CrossRef] [Google Scholar]
  36. C. Lubich, Fractional linear multistep methods for Abel-Volterra integral equations of the second kind. Math. Comput. 45 (1985) 463–469. [Google Scholar]
  37. D. Matignon. Stability results for fractional differential equations with applications to control processing. In: Vol. 2 of Computational Engineering in Systems Applications. IMACS, IEEE-SMC, Lille, France (1996) 963–968. [Google Scholar]
  38. O. Nevanlinna, On the numerical solutions of some Volterra equations on infinite intervals. Math.-Rev. Anal. Numr. Thor. Approx. 5 (1976) 31–57. [Google Scholar]
  39. I. Petras, Fractional-order Nonlinear Systems: Modeling, Analysis and Simulation. Higher Education Press Beijing and Springer-Verlag, Berlin (2011). [CrossRef] [Google Scholar]
  40. I. Podlubny, Fractional Differential Equations, Academic Press, London (1998). [Google Scholar]
  41. Z. Sun and X. Wu, A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56 (2006) 193–209. [Google Scholar]
  42. R. Temam, Infinite dimensional dynamical systems in mechanics and physics. In: Vol. 68 of Applied Mathematical Sciences. Springer-Verlag, Berlin (1998). [Google Scholar]
  43. D. Wang and A. Xiao, Dissipativity and contractivity for fractional-order systems. Nonlinear Dyn. 80 (2015) 287–294. [Google Scholar]
  44. D. Wang and J. Zou, Dissipativity and contractivity analysis for fractional functional differential equations and their numerical approximations. SIAM J. Numer. Anal. 57 (2019) 1445–1470. [Google Scholar]
  45. Y. Xing and Y. Yan, A higher order numerical method for time fractional partial differential equations with nonsmooth data. J. Comput. Phys. 357 (2018) 305–323. [Google Scholar]
  46. D. Xu, Uniform l1 behavior for time discretization of a Volterra equation with completely monotonic kernel II: Convergence. SIAM J. Numer. Anal. 46 (2008) 231–259. [Google Scholar]
  47. D. Xu, Decay properties for the numerical solutions of a partial differential equation with memory. J. Sci. Comput. 62 (2015) 146–178. [Google Scholar]
  48. Y. Yan, M. Khan and N.J. Ford, An analysis of the modified L1 scheme for time-fractional partial differential equations with nonsmooth data. SIAM J. Numer. Anal. 56 (2018) 210–227. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you