Free Access
Issue
ESAIM: M2AN
Volume 54, Number 1, January-February 2020
Page(s) 129 - 143
DOI https://doi.org/10.1051/m2an/2019078
Published online 14 January 2020
  1. H. Brunner, Collocation Methods for Volterra Integral and Related Functional Differential Equations. Cambridge University Press, Cambridge, UK (2004). [CrossRef] [Google Scholar]
  2. H. Brunner, Volterra Integral Equations: An Introduction to Theory and Applications. Cambridge University Press, Cambridge Monographs on Applied and Computational Mathematics (2017). [CrossRef] [Google Scholar]
  3. H. Brunner and P.J. van der Houwen, The Numerical Solution of Volterra Equations. North-Holland, Amsterdam, The Netherlands, 1986. [Google Scholar]
  4. E. Cesaro, Analisi Algebrica. Fratelli Bocca Editori, Turin, Italy (1894). [Google Scholar]
  5. E. Di Costanzo, M. Menci, E. Messina, R. Natalini and A. Vecchio, A hybrid model of collective motion of discrete particles under alignment and continuum chemotaxis. Discrete Contin. Dyn. Syst. Ser. B 25 (2020) 443–472. [Google Scholar]
  6. C. Etchegaray, B. Grec, B. Maury, N. Meunier, L. Navoret, An integro-differential equation for 1d cell migration, edited by C. Constanda, A. Kirsch. In: Integral Methods in Science and Engineering. Birkhauser, Cham (2015). [Google Scholar]
  7. B. Grec, B. Maury, N. Meunier and L. Navoret, A 1d model of leukocyte adhesion coupling bond dynamics with blood velocity. J. Theor. Biol. 452 (2018) 35–46. [CrossRef] [PubMed] [Google Scholar]
  8. G. Gripenberg, S.-O. Londen, O. Staffans, Volterra Integral and Functional Equations. Cambridge University Press, Cambridge, UK (1990). [CrossRef] [Google Scholar]
  9. C. Lubich, On the stability of linear multistep methods for Volterra convolution equations. IMA J. Numer. Anal. 3 (1983) 439–465. [CrossRef] [Google Scholar]
  10. E. Messina and A. Vecchio, Boundedness and asymptotic stability for the solution of homogeneous Volterra discrete equations. Discrete Dyn. Nat. Soc. 2018 (2018) 6935069. [Google Scholar]
  11. R.E.A.C. Paley and N. Wiener, Fourier Transforms in the Complex Domain. Amer. Math. Soc. Providence, R.I. (1934). [Google Scholar]
  12. R. Spiglerand M. Vianello, Cesaro theorems for complex sequences. J. Math. Anal. Appl. 180 (1993) 317–324. [Google Scholar]
  13. A. Vecchio, Stability results on some direct quadrature methods for Volterra integro-differential equations. Dynam. Systems Appl. 7 (1998) 501–518. [Google Scholar]
  14. P.H.M. Wolkenfelt, Linear multistep methods and the construction of quadrature formulae for Volterra integral and integro-differential equations. Afdeling Numerieke Wiskunde [Department of Numerical Mathematics] (1979) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you