Free Access
Volume 54, Number 1, January-February 2020
Page(s) 145 - 180
Published online 27 January 2020
  1. R.A. Adams and J.J.F. Fournier, Sobolev spaces, 2nd edition. In: Vol. 140 of Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam (2003). [Google Scholar]
  2. M. Ainsworth and W. McLean, Multilevel diagonal scaling preconditioners for boundary element equations on locally refined meshes. Numer. Math. 93 (2003) 387–413. [Google Scholar]
  3. F. Ben Belgacem, Polynomial extensions of compatible polynomial traces in three dimensions. Comput. Meths. Appl. Mech. Eng. 116 (1994) 235–241. [CrossRef] [Google Scholar]
  4. C. Bernardi and Y. Maday, Spectral methods, edited by P.G. Ciarlet and J.L. Lions. In Handbook of Numerical Analysis. North Holland, Amsterdam (1997). [Google Scholar]
  5. C. Bernardi, M. Dauge and Y. Maday, Trace liftings which preserve polynomials. C.R. Acad. Sci. Paris, Série I 315 (1992) 333–338. [Google Scholar]
  6. C. Bernardi, M. Dauge and Y. Maday, Polynomials in the Sobolev world (version 2). Tech. Report 14 , IRMAR (2007). [Google Scholar]
  7. C. Bernardi, M. Dauge and Y. Maday, The lifting of polynomial traces revisited. Math. Comput. 79 (2010) 47–69. [Google Scholar]
  8. R.S. Falk and R. Winther, The bubble transform: a new tool for analysis of finite element methods. Found. Comput. Math. (2015) 1–32. [Google Scholar]
  9. H. Federer, Geometric measure theory, In Vol. 153 of Die Grundlehren der mathematischen Wissenschaften. Springer-Verlag New York Inc., New York, NY (1969) MR 0257325. [Google Scholar]
  10. T. Führer, J.M. Melenk, D. Praetorius and A. Rieder, Optimal additive Schwarz methods for the hp-BEM: The hypersingular integral operator in 3D on locally refined meshes. Comput. Math. Appl. 70 (2015) 1583–1605. [Google Scholar]
  11. E.H. Georgoulis, Inverse-type estimates on hp-finite element spaces and applications. Math. Comput. 77 (2008) 201–219. [Google Scholar]
  12. N. Heuer, Additive Schwarz methods for indefinite hypersingular integral equations in R3 – the p-version. Appl. Anal. 72 (1999) 411–437. [Google Scholar]
  13. N. Heuer, On the equivalence of fractional-order Sobolev semi-norms. J. Math. Anal. Appl. 417 (2014) 505–518. [Google Scholar]
  14. G.C. Hsiao and W.L. Wendland, Boundary integral equations, In Vol. 164 of Applied Mathematical Sciences. Springer-Verlag, Berlin (2008). [CrossRef] [Google Scholar]
  15. M. Karkulik, J.M. Melenk and A. Rieder, On interpolation spaces of piecewise polynomials on mixed meshes (2016). [Google Scholar]
  16. P.-L. Lions, On the Schwarz alternating method. I. In First International Symposium on Domain Decomposition Methods for Partial Differential Equations (Paris, 1987), SIAM, Philadelphia, PA (1988) 1–42. [Google Scholar]
  17. Y. Maday, Relèvement de traces polyômiales et interpolations hilbertiennes entres espaces de polynômes. C.R. Acad. Sci. Paris Sér. I 309 (1989) 463–468. [Google Scholar]
  18. A.M. Matsokin and S.V. Nepomnyaschikh, A Schwarz alternating method in a subspace. Sov. Math. 29 (1985) 78–84. [Google Scholar]
  19. W. McLean, Strongly elliptic systems and boundary integral equations, Cambridge University Press, Cambridge (2000). [Google Scholar]
  20. J.M. Melenk and B. Wohlmuth, Quasi-optimal approximation of surface based Lagrange multipliers in finite element methods. SIAM J. Numer. Anal. 50 (2012) 2064–2087. [Google Scholar]
  21. L. Pavarino, Additive Schwarz methods for the p-version finite element method. Numer. Math. 66 (1994) 493–515. [Google Scholar]
  22. S.A. Sauter and C. Schwab, Boundary element methods. Translated and expanded from the 2004 German original. . In Vol. 39 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (2011). [CrossRef] [Google Scholar]
  23. J. Schöberl, J.M. Melenk, C. Pechstein and S. Zaglmayr, Additive Schwarz preconditioning for p-version triangular and tetrahedral finite elements. IMA J. Numer. Anal. 28 (2008) 1–24. [CrossRef] [Google Scholar]
  24. C. Schwab, p- and hp-finite element methods. Theory and applications in solid and fluid mechanics. In Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press , New York, NY (1998). [Google Scholar]
  25. E.M. Stein, Singular integrals and differentiability properties of functions. Princeton University Press, Princeton (1970). [Google Scholar]
  26. O. Steinbach, Numerical approximation methods for elliptic boundary value problems. In: Finite and boundary elements. Translated from the 2003 German Original. Springer, New York, NY (2008). [Google Scholar]
  27. L. Tartar, An introduction to Sobolev spaces and interpolation spaces. In Vol. 3 of Lecture Notes of the Unione Matematica Italiana. Springer, Berlin (2007). [Google Scholar]
  28. A. Toselli and O. Widlund, Domain decomposition methods – algorithms and theory. In Vol. 34 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (2005). [CrossRef] [Google Scholar]
  29. T. Tran and E.P. Stephan, Additive Schwarz methods for the h-version boundary element method. Appl. Anal. 60 (1996) 63–84. [Google Scholar]
  30. T. von Petersdorff, Randwertprobleme der Elastizitätstheorie für Polyeder – Singularitäten und Approximation mit Randelementmethoden. Ph.D. thesis, Technische Hochschule Darmstadt (1989). [Google Scholar]
  31. X. Zhang, Multilevel Schwarz methods. Numer. Math. 63 (1992) 521–539. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you