Free Access
Issue
ESAIM: M2AN
Volume 54, Number 1, January-February 2020
Page(s) 1 - 24
DOI https://doi.org/10.1051/m2an/2019051
Published online 14 January 2020
  1. S. Adjerid, R. Guo and T. Lin, High degree immersed finite element spaces by a least squares method. Int. J. Numer. Anal. Model. 14 (2016) 604–626. [Google Scholar]
  2. G. Allaire, F. Jouve and A.-M. Toader, Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194 (2004) 363–393. [Google Scholar]
  3. H.B. Ameur, M. Burger and B. Hackl, Level set methods for geometric inverse problems in linear elasticity. Inverse Prob. 20 (2004) 673–696. [CrossRef] [Google Scholar]
  4. P. Angot and Z. Li, An augmented iim & preconditioning technique for jump embedded boundary conditions. Int. J. Numer. Anal. Mod. 14 (2017) 712–729. [Google Scholar]
  5. I. Babuška, The finite element method for elliptic equations with discontinuous coefficients. Comput. (Arch. Elektron. Rechnen) 5 (1970) 207–213. [Google Scholar]
  6. I. Babuška and J.E. Osborn, Can a finite element method perform arbitrarily badly?. Math. Comput. 69 (2000) 443–462. [Google Scholar]
  7. R. Becker, E. Burman and P. Hansbo, A Nitsche extended finite element method for incompressible elasticity with discontinuous modulus of elasticity. Comput. Methods Appl. Mech. Eng. 198 (2009) 3352–3360. [Google Scholar]
  8. D. Braess, Finite Elements, 2nd edition. Theory, fast solvers, and applications in solid mechanics, Translated from the 1992 German edition by Larry L. Schumaker. Cambridge University Press, Cambridge (2001). [Google Scholar]
  9. E. Burman, Ghost penalty. C. R. Math. 348 (2010) 1217–1220. [Google Scholar]
  10. E. Burman, J. Guzmán, M.A. Sánchez and M. Sarkis, Robust flux error estimation of an unfitted nitsche method for high-contrast interface problems. IMA J. Numer. Anal. 38 (2018) 646–668. [CrossRef] [Google Scholar]
  11. Z. Chen and J. Zou, Finite element methods and their convergence for elliptic and parabolic interface problems. Numer. Math. 79 (1998) 175–202. [Google Scholar]
  12. E.T. Chung, Y. Efendiev and S. Fu, Generalized multiscale finite element method for elasticity equations. GEM Int. J. Geomath. 5 (2014) 225–254. [CrossRef] [Google Scholar]
  13. P.G. Ciarlet, Mathematical elasticity. Three-dimensional elasticity. Vol. I. In: Vol. 20 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam (1988). [Google Scholar]
  14. R.W. Clough and J.L. Tocher, Finite element stiffness matrices for analysis of plate bending. Matrix Methods in Structual Mechanics (1966) 515–545. [Google Scholar]
  15. B. Cockburn, D. Schötzau and J. Wang, Discontinuous Galerkin methods for incompressible elastic materials. Comput. Methods Appl. Mech. Eng. 195 (2006) 3184–3204. [Google Scholar]
  16. J. Dolbow, N. Moës and T. Belytschko, An extended finite element method for modeling crack growth with frictional contact. Comput. Methods Appl. Mech. Eng. 190 (2001) 6825–6846. [Google Scholar]
  17. Y. Efendiev and T.Y. Hou, Multiscale finite element methods. Theory and applications, In: Vol. 4 of Surveys and Tutorials in the Applied Mathematical Sciences, Springer, New York, 2009. [Google Scholar]
  18. R. Guo and T. Lin, A group of immersed finite element spaces for elliptic interface problems. IMA J. Numer. Anal. 39 (2019) 482–511. [CrossRef] [Google Scholar]
  19. R. Guo and T. Lin, A higher degree immersed finite element method based on a cauchy extension. SIAM J. Numer. Anal. 57 (2019) 1545–1573. [Google Scholar]
  20. R. Guo and T. Lin, An immersed finite element method for elliptic interface problems in three dimensions. Preprint arXiv:1905.10012 (2019). [Google Scholar]
  21. R. Guo, T. Lin and Y. Lin, Approximation capabilities of the immersed finite element spaces for elasticity interface problems. Numer. Methods Partial Differ. Equ. 35 (2018) 1243–1268. [Google Scholar]
  22. R. Guo, T. Lin and Y. Lin, A fixed mesh method with immersed finite elements for solving interface inverse problems. J. Sci. Comput. 79 (2018) 148–175. [Google Scholar]
  23. R. Guo, T. Lin and Y. Lin, Recovering elastic inclusions by shape optimization methods with immersed finite elements. J. Comput. Phys. 404 (2020) 109123. [Google Scholar]
  24. R. Guo, T. Lin and X. Zhang, Nonconforming immersed finite element spaces for elliptic interface problems. Comput. Math. Appl. 75 (2018) 2002–2016. [Google Scholar]
  25. R. Guo, T. Lin and Q. Zhuang, Improved error estimation for the partially penalized immersed finite element methods for elliptic interface problems. Int. J. Numer. Anal. Model. 16 (2019) 575–589. [Google Scholar]
  26. J. Guzmán, M.A. Sánchez and M. Sarkis, A finite element method for high-contrast interface problems with error estimates independent of contrast. J. Sci. Comput. 73 (2017) 330–365. [Google Scholar]
  27. A. Hansbo and P. Hansbo, An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems. Comput. Methods Appl. Mech. Eng. 191 (2002) 5537–5552. [Google Scholar]
  28. A. Hansbo and P. Hansbo, A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput. Methods Appl. Mech. Eng. 193 (2004) 3523–3540. [Google Scholar]
  29. P. Hansbo and M.G. Larson, Discontinuous Galerkin and the Crouzeix-Raviart element: application to elasticity. ESAIM: M2AN 37 (2003) 63–72. [CrossRef] [EDP Sciences] [Google Scholar]
  30. X. He, T. Lin and Y. Lin, A bilinear immersed finite volume element method for the diffusion equation with discontinuous coefficient. Commun. Comput. Phys. 6 (2009) 185–202. [Google Scholar]
  31. X. He, T. Lin, Y. Lin and X. Zhang, Immersed finite element methods for parabolic equations with moving interface. Numer. Methods Partial Differ. Equ. 29 (2013) 619–646. [Google Scholar]
  32. J. Hegemann, A. Cantarero, C.L. Richardson and J.M. Teran, An explicit update scheme for inverse parameter and interface estimation of piecewise constant coefficients in linear elliptic pdes. SIAM J. Sci. Comput. 35 (2013) A1098–A1119. [Google Scholar]
  33. D.Y. Kwak, S. Lee and Y. Hyon, A new finite element for interface problems having robin type jump. Int. J. Numer. Anal. Mod. 14 (2017) 532–549. [Google Scholar]
  34. D. Leguillon and E. Sanchez-Palencia, Computation of Singular Solutions in Elliptic Problems and Elasticity, Wiley, New York, NY, 1987. [Google Scholar]
  35. T. Lin and X. Zhang, Linear and bilinear immersed finite elements for planar elasticity interface problems. J. Comput. Appl. Math. 236 (2012) 4681–4699. [Google Scholar]
  36. Z. Li, T. Lin, Y. Lin and R.C. Rogers, An immersed finite element space and its approximation capability. Numer. Methods Partial Differ. Equ. 20 (2004) 338–367. [Google Scholar]
  37. T. Lin, Y. Lin and X. Zhang, A method of lines based on immersed finite elements for parabolic moving interface problems. Adv. Appl. Math. Mech. 5 (2013) 548–568. [Google Scholar]
  38. T. Lin, Y. Lin and X. Zhang, Partially penalized immersed finite element methods for elliptic interface problems. SIAM J. Numer. Anal. 53 (2015) 1121–1144. [Google Scholar]
  39. M. Lin, T. Lin and H. Zhang, Error analysis of an immersed finite element method for Euler-Bernoulli beam interface problems. Int. J. Numer. Anal. Mod. 14 (2017) 822–841. [Google Scholar]
  40. J.M. Melenk and I. Babuška, The partition of unity finite element method: basic theory and applications. Comput. Methods Appl. Mech. Eng. 139 (1996) 289–314. [Google Scholar]
  41. S. Nicaise and A.-M. Sändig, Transmission problems for the laplace and elasticity operators: regularity and boundary integral formulation. Math. Models Methods Appl. Sci. 9 (1999) 855–898. [Google Scholar]
  42. S.C. Reddy and L.N. Trefethen, Stability of the method of lines. Numer. Math. 62 (1992) 235–267. [Google Scholar]
  43. X. Ren and J. Wei, On a two-dimensional elliptic problem with large exponent in nonlinearity. Trans. Am. Math. Soc. 343 (1994) 749–763. [Google Scholar]
  44. B. Rivière, Discontinuous Galerkin methods for solving elliptic and parabolic equations. Theory and implementation. In: Vol. 35 of Frontiers in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2008). [Google Scholar]
  45. J. Sokolowski and J.-P. Zolésio, Introduction to shape optimization: shape sensitivity analysis, In: Vol. 16 of Springer Series in Computational Mathematics. Springer (1992). [CrossRef] [Google Scholar]
  46. N. Sukumar, D.L. Chopp, N. Moës and T. Belytschko, Modeling holes and inclusions by level sets in the extended finite-element method. Comput. Methods Appl. Mech. Eng. 190 (2001) 6183–6200. [Google Scholar]
  47. N. Sukumar, Z.Y. Huang, J.H. Prévost and Z. Suo, Partition of unity enrichment for bimaterial interface cracks. Int. J. Numer. Methods Eng. 59 (2004) 1075–1102. [Google Scholar]
  48. M.Y. Wang, X. Wang and D. Guo, A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng. 192 (2003) 227–246. [Google Scholar]
  49. T. Warburton and J.S. Hesthaven, On the constants in hp-finite element trace inverse inequalities. Comput. Methods Appl. Mech. Eng. 192 (2003) 2765–2773. [Google Scholar]
  50. T.P. Wihler, Locking-free adaptive discontinuous Galerkin FEM for linear elasticity problems. Math. Comput. 75 (2006) 1087–1102. [Google Scholar]
  51. X. Yang. Immersed interface method for elasticity problems with interfaces. Ph.D, Ph.D. thesis, North Carolina State University (2004). [Google Scholar]
  52. X. Yang, B. Li and Z. Li, The immersed interface method for elasticity problems with interfaces. Progress in partial differential equations (Pullman, WA, 2002). Dyn. Contin. Discrete Impuls. Syst. Ser. Math. Anal. 10 (2003) 783–808. [Google Scholar]
  53. H. Zhang, T. Lin and Y. Lin, Linear and quadratic immersed finite element methods for the multi-layer porous wall model for coronary drug-eluting stents. Int. J. Numer. Anal. Mod. 15 (2018) 48–73. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you