Free Access
Issue
ESAIM: M2AN
Volume 54, Number 1, January-February 2020
Page(s) 105 - 128
DOI https://doi.org/10.1051/m2an/2019053
Published online 14 January 2020
  1. F. Andreu and J. Mazón, J. Rossi and J. Toledo, Nonlocal diffusion problems. , In: Vol. 165 of Mathematical Surveys and Monographs. American Mathematical Society (2010). [CrossRef] [Google Scholar]
  2. G. Aubert and P. Kornprobst, Can the nonlocal characterization of Sobolev spaces by Bourgain et al. be useful for solving variational problems?. SIAM J. Numer. Anal. 47 (2009) 844–860. [Google Scholar]
  3. G. Barles, E. Chasseigne and C. Imbert, On the Dirichlet problem for second-order elliptic integro-differential equations. Indiana Univ. Math. J. 57 (2008) 213–246. [CrossRef] [MathSciNet] [Google Scholar]
  4. J. Bourgain, H. Brezis and P. Mironescu. Another Look at Sobolev Spaces, IOS Press, Amsterdam (2001) 439–455. [Google Scholar]
  5. A. Buades, B. Coll and J. Morel, Image denoising methods. A new nonlocal principle. SIAM Rev. 52 (2010) 113–147. [CrossRef] [Google Scholar]
  6. C. Bucur and E. Valdinoci, Nonlocal diffusion and applications. In: Vol. 20 of Lecture Notes of the Unione Matematica Italiana. Springer (2016). [CrossRef] [Google Scholar]
  7. D. Burago, S. Ivanov and Y. Kurylev, A graph discretization of the Laplace-Beltrami operator. J. Spectral Theory 4 (2014) 675–714. [CrossRef] [Google Scholar]
  8. N. Burch and R.B. Lehoucq, Classical, nonlocal, and fractional diffusion equations on bounded domains. Int. J. Multiscale Comput. Eng. 9 (2011) 661. [Google Scholar]
  9. R. Coifman and S. Lafon. Diffusion maps. Appl. Comput. Harmonic Anal. 21 (2006) 5–30. [CrossRef] [Google Scholar]
  10. S. Conti, G. Dolzmann and S. Müller, The div-curl lemma for sequences whose divergence and curl are compact in W1,1. C.R. Math. 349 (2011) 175–178. [CrossRef] [Google Scholar]
  11. O. Defterli, M. D’Elia, Q. Du, M. Gunzburger, R. Lehoucq and M. Meerschaert, Fractional diffusion on bounded domains. Fract. Calc. Appl. Anal. 18 (2015) 342–360. [Google Scholar]
  12. P. Degond and S. Mas-Gallic, The weighted particle method for convection-diffusion equations. I. The case of an isotropic viscosity. Math. Comput. 53 (1989) 485–507. [Google Scholar]
  13. Q. Du, Nonlocal modeling, analysis and computation. In: Vol. 94 of CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM (2019). [Google Scholar]
  14. Q. Du and X. Tian, Stability of nonlocal Dirichlet integrals and implications for peridynamic correspondence material modeling. SIAM J. Appl. Math. 78 (2018) 1536–1552. [Google Scholar]
  15. Q. Du and X. Tian, Mathematics of smoothed particle hydrodynamics, a study via nonlocal Stokes equations. To appear in: Found. Comput. Math., DOI: 10.1007/s10208-019-09432-0 (2019). [Google Scholar]
  16. Q. Du and K. Zhou, Mathematical analysis for the peridynamic nonlocal continuum theory. ESAIM: M2AN 45 (2011) 217–234. [CrossRef] [EDP Sciences] [Google Scholar]
  17. Q. Du, M. Gunzburger, R.B. Lehoucq and K. Zhou, Analysis and approximation of nonlocal diffusion problems with volume constraints. SIAM Rev. 54 (2012) 667–696. [CrossRef] [MathSciNet] [Google Scholar]
  18. Q. Du, M. Gunzburger, R.B. Lehoucq and K. Zhou, A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws. Math. Models Methods Appl. Sci. 23 (2013) 493–540. [Google Scholar]
  19. Q. Du, Y. Tao, X. Tian and J. Yang, Robust a posteriori stress analysis for quadrature collocation approximations of nonlocal models via nonlocal gradients. Comput. Methods Appl. Mech. Eng. 310 (2016) 605–627. [Google Scholar]
  20. Q. Du, J. Yang and Z. Zhou, Analysis of a nonlocal-in-time parabolic equation. Discrete Continuous Dyn. Syst. B 22 (2017) 339–368. [CrossRef] [Google Scholar]
  21. Q. Du, T. Mengesha and X. Tian, Nonlocal criteria for compactness in the space of lp vector fields, Preprint arXiv:1801.08000 (2018) . [Google Scholar]
  22. L.C. Evans, Weak convergence methods for nonlinear partial differential equations. In: Number 74 of CBMS Regional Conference Series in Mathematics, American Mathematical Soc. (1990). [Google Scholar]
  23. M. Fuentes, M. Kuperman and V. Kenkre, Nonlocal interaction effects on pattern formation in population dynamics. Phys. Rev. Lett. 91 (2003) 158104. [CrossRef] [PubMed] [Google Scholar]
  24. M. Felsinger, M. Kassmann and P. Voigt, The Dirichlet problem for nonlocal operators. Math. Z. 279 (2015) 779–809. [CrossRef] [Google Scholar]
  25. G. Gilboa and S. Osher, Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7 (2008) 1005–1028. [Google Scholar]
  26. R. Gingold and J. Monaghan, Smoothed particle hydrodynamics: theory and application to non-spherical stars. MNRAS 181 (1977) 375–389. [NASA ADS] [CrossRef] [Google Scholar]
  27. T. Hillen, K. Painter and C. Schmeiser, Global existence for chemotaxis with finite sampling radius. Discrete Continuous Dyn. Syst. Ser. B 7 (2007) 125. [Google Scholar]
  28. C.-Y. Kao, Y. Lou and W. Shen, Random dispersal vs. nonlocal dispersal. Discrete Continuous. Dyn. Syst. 26 (2010) 551–596. [Google Scholar]
  29. A. Korn, Ubereinige ungleichungen, welche in der theorie der elastischen und elektrischen schwingungen eine rolle spielen. Bull. Int. Cracovie Akademie Umiejet Classe Sci. Math. Nat. 3 (1909) 705–724. [Google Scholar]
  30. M. Křížek and P. Neittaanmäki, On the validity of friedrichs’inequalities. Math. Scand. 54 (1984) 17–26. [CrossRef] [Google Scholar]
  31. H. Lee and Q. Du, Asymptotically compatible sph-like particle discretizations of one dimensional linear advection models. SIAM J. Numer. Anal. 57 (2019) 127–147. [Google Scholar]
  32. R.B. Lehoucq and S.A. Silling, Force flux and the peridynamic stress tensor. J. Mech. Phys. Solids 56 (2008) 1566–1577. [Google Scholar]
  33. X.H. Li and J. Lu, Quasi-nonlocal coupling of nonlocal diffusions. SIAM J. Numer. Anal. 55 (2017) 2394–2415. [Google Scholar]
  34. L.B. Lucy, A numerical approach to the testing of the fission hypothesis. Astron. J. 82 (1977) 1013–1024. [Google Scholar]
  35. K. Mazowiecka and A. Schikorra, Fractional div-curl quantities and applications to nonlocal geometric equations. J. Funct. Anal. 275 (2018) 1–44. [Google Scholar]
  36. T. Mengesha, Nonlocal Korn-type characterization of Sobolev vector fields. Commun. Contemp. Math. 14 (2012) 1250028. [CrossRef] [Google Scholar]
  37. T. Mengesha and Q. Du, The bond-based peridynamic system with dirichlet-type volume constraint. Proc. R. Soc. Edinburgh Sect. A: Math. 144 (2014) 161–186. [CrossRef] [Google Scholar]
  38. T. Mengesha and Q. Du, Characterization of function spaces of vector fields and an application in nonlinear peridynamics. Nonlinear Anal. 140 (2016) 82–111. [CrossRef] [Google Scholar]
  39. T. Mengesha and D. Spector, Localization of nonlocal gradients in various topologies. Calculus Variations Partial Differ. Equ. 52 (2015) 253–279. [CrossRef] [Google Scholar]
  40. F. Murat, Compacité par compensation. Anal. Scuola Normale Superiore Pisa-Classe Sci. 5 (1978) 489–507. [Google Scholar]
  41. J. Necas and I. Hlavácek, Mathematical Theory of Elastic and Elasto-plastic Bodies: An Introduction. In Vol. 3. . Elsevier (2017). [Google Scholar]
  42. S. Nugent and H.A. Posch, Liquid drops and surface tension with smoothed particle applied mechanics. Phys. Rev. E 62 (2000) 4968. [Google Scholar]
  43. J. Peddieson, G.R. Buchanan and R.P. McNitt, Application of nonlocal continuum models to nanotechnology. Int. J. Eng. Sci. 41 (2003) 305–312. [Google Scholar]
  44. L. Pismen, Nonlocal diffuse interface theory of thin films and the moving contact line. Phys. Rev. E 64 (2001) 021603. [Google Scholar]
  45. W. Radu and K. Wells, A doubly nonlocal laplace operator and its connection to the classical laplacian. J. Integral Equ. Appl. 31 (2019) 379–409. [CrossRef] [Google Scholar]
  46. J. Saranen, On an inequality of friedrichs. Math. Scand. 51 (1983) 310–322. [CrossRef] [Google Scholar]
  47. S.A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces. J. Mechan. Phys. Solids 48 (2000) 175–209. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  48. S.A. Silling, Stability of peridynamic correspondence material models and their particle discretizations. Comput. Methods App. Mech. Eng. 322 (2017) 42–57. [CrossRef] [Google Scholar]
  49. V. Tarasov, Fractional vector calculus and fractional Maxwell’s equations. Ann. Phys. 323 (2008) 2756–2778. [Google Scholar]
  50. R. Temam, Navier–Stokes Equations: Theory and Numerical Analysis. In Vol. 343. American Mathematical Soc. (2001). [Google Scholar]
  51. X. Tian and Q. Du, Analysis and comparison of different approximations to nonlocal diffusion and linear peridynamic equations. SIAM J. Numer. Anal. 51 (2013) 3458–3482. [Google Scholar]
  52. H. Tian, L. Ju and Q. Du, A conservative nonlocal convection-diffusion model and asymptotically compatible finite difference discretization. Comput. Methods Appl. Mech. Eng. 320 (2017) 46–67. [Google Scholar]
  53. C.M. Topaz, A.L. Bertozzi and M.A. Lewis, A nonlocal continuum model for biological aggregation. Bull. Math. Biol. 68 (2006) 1601. [Google Scholar]
  54. A.-K. Tornberg and B. Engquist, Regularization techniques for numerical approximation of pdes with singularities. J. Sci. Comput. 19 (2003) 527–552. [Google Scholar]
  55. N. Trillos and D. Slepcev, A variational approach to the consistency of spectral clustering. Appl. Comput. Harmonic Anal. (2016). [Google Scholar]
  56. Y. van Gennip and A. Bertozzi, γ-convergence of graph Ginzburg-Landau functionals. Adv. Differ. Equ. 17 (2012) 1115–1180. [Google Scholar]
  57. K. Zhou and Q. Du, Mathematical and numerical analysis of linear peridynamic models with nonlocal boundary conditions. SIAM J. Numer. Anal. 48 (2010) 1759–1780. [Google Scholar]
  58. Y. Zhu and P.J. Fox, Smoothed particle hydrodynamics model for diffusion through porous media. Transp. Porous Media 43 (2001) 441–471. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you