Free Access
Volume 54, Number 1, January-February 2020
Page(s) 59 - 78
Published online 14 January 2020
  1. M. Ahmadinia, Z. Safari and S. Fouladi, Analysis of LDG method for time-space fractional convection–diffusion equations. BIT 58 (2018) 533–554. [CrossRef] [Google Scholar]
  2. B. Baeumer and M.M. Meerschaert, Tempered stable lévy motion and transient super-diffusion. J. Comput. Appl. Math. 233 (2010) 2438–2448. [Google Scholar]
  3. B. Baeumer, D.A. Benson, M.M. Meerschaert and S.W. Wheatcraft, Subordinated advection-dispersion equation for contaminant transport. Water Resour. Res. 37 (2001) 1543–1550. [Google Scholar]
  4. B. Baeumer, M. Kovács and M.M. Meerschaert, Fractional reproduction-dispersal equations and heavy tail dispersal kernels. Bull. Math. Biol. 69 (2007) 2281–2297. [Google Scholar]
  5. D.A. Benson, S.W. Wheatcraft and M.M. Meerschaert, Application of a fractional advection-dispersion equation. Water Resour. Res. 36 (2000) 1403–1412. [Google Scholar]
  6. D.A. Benson, R. Schumer, M.M. Meerschaert, S.W. Wheatcraft, Fractional dispersion, lévy motion, and the made tracer tests. Transp. Porous Media 42 (2001) 211–240. [Google Scholar]
  7. P. Carr, H. Geman, D.B. Madan and M. Yor, The fine structure of asset returns: An empirical investigation. J. Bus. 75 (2002) 305–332. [Google Scholar]
  8. P. Carr, H. Geman, D.B. Madan and M. Yor, Stochastic volatility for lévy processes. Math. Finance 13 (2003) 345–382. [CrossRef] [MathSciNet] [Google Scholar]
  9. Á. Cartea and D. del Castillo-Negrete, Fluid limit of the continuous-time random walk with general lévy jump distribution functions. Phys. Rev. E 76 (2007) 041105. [Google Scholar]
  10. P. Castillo, B. Cockburn, D. Schötzau and C. Schwab, Optimal a priori error estimates for the hp-version of the local discontinuous Galerkin method for convection–diffusion problems. Math. Comput. 71 (2002) 455–478. [Google Scholar]
  11. M. Chen and W. Deng, Discretized fractional substantial calculus. ESAIM: M2AN 49 (2015) 373–394. [CrossRef] [EDP Sciences] [Google Scholar]
  12. M. Chen and W. Deng, A second-order accurate numerical method for the space–time tempered fractional diffusion-wave equation. Appl. Math. Lett. 68 (2017) 87–93. [Google Scholar]
  13. M. Chen and W. Deng, High order algorithm for the time-tempered fractional Feynman-Kac equation. J. Sci. Comput. 76 (2018) 867–887. [Google Scholar]
  14. S. Chen, J. Shen and L.-L. Wang, Laguerre functions and their applications to tempered fractional differential equations on infinite intervals. J. Sci. Comput. 74 (2018) 1286–1313. [Google Scholar]
  15. P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978). [Google Scholar]
  16. B. Cockburn and K. Mustapha, A hybridizable discontinuous Galerkin method for fractional diffusion problems. Numer. Math. 130 (2015) 293–314. [Google Scholar]
  17. B. Cockburn, G. Kanschat, I. Perugia and D. Schotzau, Superconvergence of the local discontinuous Galerkin method for elliptic problems on cartesian grids. SIAM J. Numer. Anal. 39 (2001) 264–285. [Google Scholar]
  18. J.H. Cushman and T.R. Ginn, Fractional advection-dispersion equation: A classical mass balance with convolution-fickian flux. Water Resour. Res. 36 (2000) 3763–3766. [Google Scholar]
  19. M. Dehghan and M. Abbaszadeh, A finite difference/finite element technique with error estimate for space fractional tempered diffusion-wave equation. Comput. Math. App. 75 (2018) 2903–2914. [Google Scholar]
  20. W. Deng and J.S. Hesthaven, Local discontinuous Galerkin methods for fractional diffusion equations. ESAIM: M2AN 47 (2013) 1845–1864. [CrossRef] [EDP Sciences] [Google Scholar]
  21. W. Deng and J.S. Hesthaven, Local discontinuous Galerkin methods for fractional ordinary differential equations. BIT 55 (2015) 967–985. [CrossRef] [Google Scholar]
  22. Z. Deng, L. Bengtsson and V.P. Singh, Parameter estimation for fractional dispersion model for rivers. Environ. Fluid Mech. 6 (2006) 451–475. [CrossRef] [Google Scholar]
  23. J. Deng, L. Zhao and Y. Wu, Fast predictor-corrector approach for the tempered fractional differential equations. Numer. Algorithms 74 (2017) 717–754. [Google Scholar]
  24. V.J. Ervin and J.P. Roop, Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ. Equ. 22 (2006) 558–576. [Google Scholar]
  25. R. Gorenflo, F. Mainardi, E. Scalas and M. Raberto, Fractional calculus and continuous-time finance III: the diffusion limit Mathematical Finance. Springer (2001) 171–180. [Google Scholar]
  26. X. Guo, Y. Li and H. Wang, A high order finite difference method for tempered fractional diffusion equations with applications to the cgmy model. SIAM J. Sci. Comput. 40 (2018) A3322–A3343. [Google Scholar]
  27. E. Hanert and C. Piret, A chebyshev pseudospectral method to solve the space-time tempered fractional diffusion equation. SIAM J. Sci. Comput. 36 (2014) A1797–A1812. [Google Scholar]
  28. A. Hanyga, Wave propagation in media with singular memory. Math. Comput. Model. 34 (2001) 1399–1421. [Google Scholar]
  29. J.-H. Jeon, H.M.-S. Monne, M. Javanainen and R. Metzler, Anomalous diffusion of phospholipids and cholesterols in a lipid bilayer and its origins. Phys. Rev. Lett. 109 (2012) 188103. [CrossRef] [PubMed] [Google Scholar]
  30. A.A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier Science Limited. 204 (2006). [Google Scholar]
  31. C. Li and W. Deng, High order schemes for the tempered fractional diffusion equations. Adv. Comput. Math. 42 (2016) 543–572. [Google Scholar]
  32. R.L. Magin, Fractional Calculus in Bioengineering. Begell House Redding (2006). [Google Scholar]
  33. F. Mainardi, M. Raberto, R. Gorenflo and E. Scalas, Fractional calculus and continuous-time finance ii: the waiting-time distribution. Phys. A: Stat. Mech. App. 287 (2000) 468–481. [CrossRef] [Google Scholar]
  34. O. Marom and E. Momoniat, A comparison of numerical solutions of fractional diffusion models in finance. Nonlinear Anal.: Real World App. 10 (2009) 3435–3442. [CrossRef] [Google Scholar]
  35. W. McLean and K. Mustapha, Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations. SIAM J. Numer. Anal. 51 (2013) 491–515. [Google Scholar]
  36. M.M. Meerschaert and E. Scalas, Coupled continuous time random walks in finance. Phys. A: Stat. Mech. App. 370 (2006) 114–118. [CrossRef] [Google Scholar]
  37. M.M. Meerschaert, Y. Zhang and B. Baeumer, Tempered anomalous diffusion in heterogeneous systems. Geophys. Res. Lett. 35 (2008). [CrossRef] [PubMed] [Google Scholar]
  38. R. Metzler and J. Klafter, The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A: Math. Gen. 37 (2004) R161. [NASA ADS] [CrossRef] [Google Scholar]
  39. K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, 1993. [Google Scholar]
  40. K.K. Mustapha, B. Abdallah and K.M. Furati, A discontinuous Petrov-Galerkin method for time-fractinal diffusion equations. SIAM J. Numer. Anal. 52 (2014) 2512–2529. [Google Scholar]
  41. I. Podlubny, An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. In Vol. 198 ofMathematics in Science and Engineering (1999). [Google Scholar]
  42. B. Riviere, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. SIAM, Philadelphia, PA (2008). [CrossRef] [Google Scholar]
  43. F. Sabzikar, M.M. Meerschaert and J. Chen, Tempered fractional calculus. J. Comput. Phys. 293 (2015) 14–28. [CrossRef] [PubMed] [Google Scholar]
  44. E. Scalas, Five years of continuous-time random walks in econophysics. In: The Complex Networks of Economic Interactions, Springer (2006) 3–16. [CrossRef] [Google Scholar]
  45. R. Schumer, D.A. Benson, M.M. Meerschaert and S.W. Wheatcraft, Eulerian derivation of the fractional advection–dispersion equation. J. Contam. Hydrol. 48 (2001) 69–88. [CrossRef] [PubMed] [Google Scholar]
  46. X. Wang and W. Deng, Discontinuous Galerkin methods and their adaptivity for the tempered fractional (convection) diffusion equations. J. Comput. Appl. Math In Press (2019). [Google Scholar]
  47. S. Wang, J. Yuan, W. Deng, Y. Wu, A hybridized discontinuous Galerkin method for 2d fractional convection–diffusion equations. J. Sci. Comput. 68 (2016) 826–847. [Google Scholar]
  48. Q. Xu, J.S. Hesthaven, Discontinuous Galerkin method for fractional convection–diffusion equations. SIAM J. Numer. Anal. 52 (2014) 405–423. [Google Scholar]
  49. Y. Yu, W. Deng, Y. Wu and J. Wu, Third order difference schemes (without using points outside of the domain) for one sided space tempered fractional partial differential equations. Appl. Numer. Math. 112 (2017) 126–145. [Google Scholar]
  50. M. Zayernouri, M. Ainsworth and G.E. Karniadakis, Tempered fractional sturm–liouville eigenproblems. SIAM J. Sci. Comput. 37 (2015) A1777–A1800. [Google Scholar]
  51. Y. Zhang and M.M. Meerschaert, Gaussian setting time for solute transport in fluvial systems. Water Resour. Res. 47 (2011). [CrossRef] [PubMed] [Google Scholar]
  52. Y. Zhang, M.M. Meerschaert and A.I. Packman, Linking fluvial bed sediment transport across scales. Geophys. Res. Lett. 39 (2012). [Google Scholar]
  53. L. Zhao, W. Deng, J.S. Hesthaven, Spectral methods for tempered fractional differential equations. Preprint arXiv:1603.06511 (2016). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you