Free Access
Issue
ESAIM: M2AN
Volume 54, Number 2, March-April 2020
Page(s) 391 - 430
DOI https://doi.org/10.1051/m2an/2019071
Published online 12 February 2020
  1. A. Abdulle, G. Vilmart and K. Zygalakis, High order numerical approximation of the invariant measure of ergodic SDEs. SIAM J. Numer. Anal. 52 (2014) 1600–1622. [Google Scholar]
  2. L. Ambrosio and H.M. Soner, Level set approach to mean curvature flow in arbitrary codimension. J. Differ. Geom. 43 (1996) 693–737. [CrossRef] [Google Scholar]
  3. L. Ambrosio, N. Gigli and G. Savaré, Gradient flows: in metric spaces and in the space of probability measures. Lectures in Mathematics. Birkhäuser (2005). [Google Scholar]
  4. D. Bakry and M. Émery, Hypercontractivité de semi-groupes de diffusion. C. R. Math. Acad. Sci. Paris, Ser. I 299 (1984) 775–778. [Google Scholar]
  5. A. Banyaga and D. Hurtubise, In:Lectures on Morse Homology. Texts in the Mathematical Sciences. Springer, Netherlands (2004). [CrossRef] [Google Scholar]
  6. R.L. Bishop and R.J. Crittenden, Geometry of Manifolds. In: AMS/Chelsea Publication Series.. American Mathematical Society (1964). [Google Scholar]
  7. N. Bou-Rabee and H. Owhadi, Long-run accuracy of variational integrators in the stochastic context. SIAM J. Numer. Anal. 48 (2010) 278–297. [Google Scholar]
  8. M. Brubaker, M. Salzmann and R. Urtasun, A family of MCMC methods on implicitly defined manifoldsm, edited by N.D. Lawrence and M. Girolami. In: Proceedings of the Fifteenth International Conference on Artificial Intelligence and Statistics. Vol. 22 of Proceedings of Machine Learning Research (2012) 161–172. [Google Scholar]
  9. G. Ciccotti, R. Kapral and E. Vanden-Eijnden, Blue moon sampling, vectorial reaction coordinates, and unbiased constrained dynamics. ChemPhysChem 6 (2005) 1809–1814. [CrossRef] [PubMed] [Google Scholar]
  10. G. Ciccotti, T. Lelièvre and E. Vanden-Eijnden, Projection of diffusions on submanifolds: application to mean force computation. Commun. Pur. Appl. Math. 61 (2008) 371–408. [CrossRef] [MathSciNet] [Google Scholar]
  11. A. Debussche and E. Faou, Weak backward error analysis for SDEs. SIAM J. Numer. Anal. 50 (2012) 1735–1752. [Google Scholar]
  12. M.P. do Carmo, Riemannian Geometry. Mathematics. Birkhäuser, Boston, MA (1992). [CrossRef] [Google Scholar]
  13. I. Fatkullin, G. Kovacic and E. Vanden-Eijnden, Reduced dynamics of stochastically perturbed gradient flows. Commun. Math. Sci. 8 (2010) 439–461. [Google Scholar]
  14. G. Froyland, G.A. Gottwald and A. Hammerlindl, A computational method to extract macroscopic variables and their dynamics in multiscale systems. SIAM J. Appl. Dyn. Syst. 13 (2014) 1816–1846. [Google Scholar]
  15. T. Funaki and H. Nagai, Degenerative convergence of diffusion process toward a submanifold by strong drift. Stoch. Stoch. Rep. 44 (1993) 1–25. [CrossRef] [Google Scholar]
  16. M. Girolami and B. Calderhead, Riemann manifold Langevin and Hamiltonian Monte Carlo methods. J. R. Stat. Soc. B. 73 (2011) 123–214. [CrossRef] [Google Scholar]
  17. D. Givon, R. Kupferman and A.M. Stuart, Extracting macroscopic dynamics: model problems and algorithms. Nonlinearity 17 (2004) R55–R127. [Google Scholar]
  18. I. Gyöngy, Mimicking the one-dimensional marginal distributions of processes having an Ito differential. Probab. Th. Rel. Fields 71 (1986) 501–516. [CrossRef] [Google Scholar]
  19. C. Hartmann, C. Schütte and W. Zhang, Jarzynski equality, fluctuation theorem, and variance reduction: mathematical analysis and numerical algorithms. J. Stat. Phys. 175 (2019) 1214–1261. [Google Scholar]
  20. E.P. Hsu, Stochastic analysis on manifolds. In: Graduate Studies in Mathematics. American Mathematical Society (2002). [CrossRef] [Google Scholar]
  21. J. Jost, Riemannian Geometry and Geometric Analysis. Universitext. Springer Berlin Heidelberg (2008). [Google Scholar]
  22. G.S. Katzenberger, Solutions of a stochastic differential equation forced onto a manifold by a large drift. Ann. Probab. 19 (1991) 1587–1628. [Google Scholar]
  23. I.G. Kevrekidis and G. Samaey, Equation-free multiscale computation: algorithms and applications. Annu. Rev. Phys. Chem. 60 (2009) 321–344. [CrossRef] [PubMed] [Google Scholar]
  24. I.G. Kevrekidis, C.W. Gear, J.M. Hyman, P.G. Kevrekidid, O. Runborg and C. Theodoropoulos, Equation-free, coarse-grained multiscale computation: enabling mocroscopic simulators to perform system-level analysis. Commun. Math. Sci. 1 (2003) 715–762. [Google Scholar]
  25. I.G. Kevrekidis, C.W. Gear and G. Hummer, Equation-free: the computer-aided analysis of complex multiscale systems. AIChE J. 50 (2004) 1346–1355. [Google Scholar]
  26. F. Legoll and T. Lelièvre, Effective dynamics using conditional expectations. Nonlinearity 23 (2010) 2131–2163. [Google Scholar]
  27. B. Leimkuhler and C. Matthews, Efficient molecular dynamics using geodesic integration and solvent–solute splitting. Proc. Math. Phys. Eng. Sci. 472 (2016) 20160138. [Google Scholar]
  28. B. Leimkuhler, C. Matthews and G. Stoltz, The computation of averages from equilibrium and nonequilibrium Langevin molecular dynamics. IMA J. Numer. Anal. 36 (2016) 13–79. [Google Scholar]
  29. T. Lelièvre and W. Zhang, Pathwise estimates for effective dynamics: the case of nonlinear vectorial reaction coordinates. Preprint arXiv:1805.01928 (2018). [Google Scholar]
  30. T. Lelièvre, M. Rousset and G. Stoltz, Free Energy Computations: A Mathematical Perspective. Imperial College Press (2010). [CrossRef] [Google Scholar]
  31. T. Lelièvre, M. Rousset and G. Stoltz, Langevin dynamics with constraints and computation of free eneregy differences. Math. Comput. 81 (2012) 2071–2125. [Google Scholar]
  32. T. Lelievre, M. Rousset and G. Stoltz, Hybrid Monte Carlo methods for sampling probability measures on submanifolds. Preprint arXiv:1807.02356 (2018). [Google Scholar]
  33. A.J. Majda, C. Franzke and B. Khouider, An applied mathematics perspective on stochastic modelling for climate. Philos. Trans. R. Soc. A 366 (2008) 2429–2455. [CrossRef] [Google Scholar]
  34. L. Maragliano and E. Vanden-Eijnden, A temperature accelerated method for sampling free energy and determining reaction pathways in rare events simulations. Chem. Phys. Lett. 426 (2006) 168–175. [Google Scholar]
  35. J.C. Mattingly, A.M. Stuart and M.V. Tretyakov, Convergence of numerical time-averaging and stationary measures via Poisson equations. SIAM J. Numer. Anal. 48 (2010) 552–577. [Google Scholar]
  36. G.A. Pavliotis and A.M. Stuart. In: Multiscale Methods: Averaging and Homogenization. Texts in Applied Mathematics. Springer, New York (2008). [Google Scholar]
  37. P. Petersen, Riemannian Geometry. In: Graduate Texts in Mathematics. Springer New York (2006). [Google Scholar]
  38. K.B. Petersen and M.S. Pedersen, The Matrix Cookbook. http://www2.imm.dtu.dk/pubdb/p.php?3274 (2012) Version 20121115. [Google Scholar]
  39. K.T. Sturm, Convex functionals of probability measures and nonlinear diffusions on manifolds. J. Math. Pures Appl. 84 (2005) 149–168. [Google Scholar]
  40. D. Talay and L. Tubaro, Expansion of the global error for numerical schemes solving stochastic differential equations. Stoch. Anal. Appl. 8 (1990) 483–509. [Google Scholar]
  41. E. Vanden-Eijnden, Numerical techniques for multi-scale dynamical systems with stochastic effects. Commun. Math. Sci. 1 (2003) 385–391. [Google Scholar]
  42. E. Weinan, B. Engquist, X. Li, W. Ren and E. Vanden-Eijnden, Heterogeneous multiscale methods: a review. Commun. Comput. Phys. 2 (2007) 367–450. [Google Scholar]
  43. E. Zappa, M. Holmes-Cerfon and J. Goodman, Monte Carlo on manifolds: sampling densities and integrating functions. Commun. Pure Appl. Math. 71 (2018) 2609–2647. [Google Scholar]
  44. W. Zhang, C. Hartmann and C. Schütte, Effective dynamics along given reaction coordinates, and reaction rate theory. Faraday Discuss. 195 (2016) 365–394. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you