Free Access
Issue
ESAIM: M2AN
Volume 54, Number 2, March-April 2020
Page(s) 431 - 463
DOI https://doi.org/10.1051/m2an/2019067
Published online 18 February 2020
  1. B. Alpert, L. Greengard and T. Hagstrom, Rapid evaluation of nonreflecting boundary kernels for time-domain wave propagation. SIAM J. Numer. Anal. 37 (2000) 1138–1164. [Google Scholar]
  2. G. Beylkin and L. Monzón, On approximation of functions by exponential sums. Appl. Comput. Harmon. Anal. 19 (2005) 17–48. [Google Scholar]
  3. G. Beylkin and L. Monzón, Approximation by exponential sums revisited. Appl. Comput. Harmon. Anal. 28 (2010) 131–149. [Google Scholar]
  4. S. Burov and E. Barkai, Critical exponent of the fractional langevin equation. Phys. Rev. Lett. 100 (2008) 070601. [CrossRef] [PubMed] [Google Scholar]
  5. S. Burov and E. Barkai, Fractional langevin equation: overdamped, underdamped, and critical behaviors. Phys. Rev. E 78 (2008) 031112. [Google Scholar]
  6. H.B. Callen and T.A. Welton, Irreversibility and generalized noise. Phys. Rev. 83 (1951) 34. [Google Scholar]
  7. W. Chu and X. Li, The mori-zwanzig formalism for the derivation of a fluctuating heat conduction model from molecular dynamics, Preprint arxiv:1709.05928 (2017). [Google Scholar]
  8. H. Ding, A high-order numerical algorithm for two-dimensional time-space tempered fractional diffusion-wave equation. Appl. Numer. Math. 135 (2019) 30–46. [Google Scholar]
  9. H. Ding and C. Li, A high-order algorithm for time-Caputo-tempered partial differential equation with Riesz derivatives in two spatial dimensions. J. Sci. Comput. 80 (2019) 81–109. [Google Scholar]
  10. G. Drazer and D.H. Zanette, Experimental evidence of power-law trapping-time distributions in porous media. Phys. Rev. E 60 (1999) 5858. [Google Scholar]
  11. T.E. Duncan, Y. Hu and B. Pasik-Duncan, Stochastic calculus for fractional Brownian motion. I. Theory. SIAM J. Control Optim. 38 (2000) 582–612. [Google Scholar]
  12. B.U. Felderhof, On the derivation of the fluctuation-dissipation theorem. J. Phys. A 11 (1978) 921–927. [CrossRef] [Google Scholar]
  13. Y. Feng, L. Li, J.-G. Liu and X. Xu, Continuous and discrete one dimensional autonomous fractional ODEs. Discrete Contin. Dyn. Syst. Ser. B 23 (2018) 3109–3135. [Google Scholar]
  14. R. Gorenflo and F. Mainardi, Fractional calculus: integral and differential equations of fractional order. In: Mathematical Physics. Springer Verlag, New York (1997) 223–276. [Google Scholar]
  15. P. Guo, C. Zeng, C. Li and Y.Q. Chen, Numerics for the fractional Langevin equation driven by the fractional Brownian motion. Fract. Calc. Appl. Anal. 16 (2013) 123–141. [Google Scholar]
  16. C. Hijón, P. Español, E. Vanden-Eijnden and R. Delgado-Buscalioni, Mori-Zwanzig formalism as a practical computational tool. Faraday Discuss. 144 (2010) 301–322. [CrossRef] [PubMed] [Google Scholar]
  17. S. Jiang and L. Greengard, Efficient representation of nonreflecting boundary conditions for the time-dependent Schrödinger equation in two dimensions. Comm. Pure Appl. Math. 61 (2008) 261–288. [CrossRef] [Google Scholar]
  18. S. Jiang, L. Greengard and S. Wang, Efficient sum-of-exponentials approximations for the heat kernel and their applications. Adv. Comput. Math. 41 (2015) 529–551. [Google Scholar]
  19. S. Jiang, J. Zhang, Q. Zhang and Z. Zhang, Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Commun. Comput. Phys. 21 (2017) 650–678. [Google Scholar]
  20. Y. Kantor and M. Kardar, Anomalous dynamics of forced translocation. Phys. Rev. E 69 (2004) 021806. [Google Scholar]
  21. A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and applications of fractional differential equations. In: Vol. 204 of North-Holland Mathematics Studies. Elsevier Science B.V, Amsterdam (2006). [Google Scholar]
  22. V. Kobelev and E. Romanov, Fractional langevin equation to describe anomalous diffusion. Prog. Theor. Phys., Suppl. 139 (2000) 470–476. [CrossRef] [Google Scholar]
  23. S.C. Kou and X.S. Xie, Generalized langevin equation with fractional gaussian noise: subdiffusion within a single protein molecule. Phys. Rev. Lett. 93 (2004) 180603. [CrossRef] [PubMed] [Google Scholar]
  24. P.M. Krasilnikov, Two-dimensional model of a double-well potential: proton transfer upon hydrogen bond deformation. Biophysics 59 (2014) 189–198. [Google Scholar]
  25. R. Kubo, The fluctuation-dissipation theorem. Rep. Prog. Phys. 29 (1966) 255. [Google Scholar]
  26. B. Leimkuhler and M. Sachs, Ergodic properties of quasi-Markovian generalized Langevin equations with configuration dependent noise and non-conservative force. Preprint arXiv:1804.04029 (2018). [Google Scholar]
  27. J.-R. Li, A fast time stepping method for evaluating fractional integrals. SIAM J. Sci. Comput. 31 (2009/2010) 4696–4714. [Google Scholar]
  28. L. Li and J.-G. Liu, A generalized definition of Caputo derivatives and its application to fractional ODEs. SIAM J. Math. Anal. 50 (2018) 2867–2900. [CrossRef] [Google Scholar]
  29. X. Li and C. Xu, A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47 (2009) 2108–2131. [Google Scholar]
  30. Z. Li, X. Bian, X. Li and G.E. Karniadakis, Incorporation of memory effects in coarse-grained modeling via the Mori-Zwanzig formalism. J. Chem. Phys. 143 (2015) 243128. [Google Scholar]
  31. Z. Li, H.S. Lee, E. Darve and G.E. Karniadakis, Computing the non-Markovian coarse-grained interactions derived from the Mori-Zwanzig formalism in molecular systems: application to polymer melts. J. Chem. Phys. 146 (2017) 014104. [Google Scholar]
  32. L. Li, J.-G. Liu and J. Lu, Fractional stochastic differential equations satisfying fluctuation-dissipation theorem and J. Stat. Phys. 169 (2017) 316–339. [Google Scholar]
  33. Y. Lin and C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225 (2007) 1533–1552. [Google Scholar]
  34. C.-K. Lin, H.-C. Chang and S.H. Lin, Symmetric double-well potential model and its application to vibronic spectra: studies of inversion modes of ammonia and nitrogen-vacancy defect centers in diamond. J. Phys. Chem. A 111 (2007) 9347–9354. [CrossRef] [PubMed] [Google Scholar]
  35. H.P. Lu, L. Xun and X.S. Xie, Single-molecule enzymatic dynamics. Science 282 (1998) 1877–1882. [Google Scholar]
  36. B.B. Mandelbrot and J.W. Van Ness, Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10 (1968) 422–437. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  37. Z. Mao, S. Chen and J. Shen, Efficient and accurate spectral method using generalized Jacobi functions for solving Riesz fractional differential equations. Appl. Numer. Math. 106 (2016) 165–181. [Google Scholar]
  38. U. Marconi, A. Puglisi, L. Rondoni and A. Vulpiani, Fluctuation–dissipation: response theory in statistical physics. Phys. Rep. 461 (2008) 111–195. [Google Scholar]
  39. W. McLean, Exponential Sum Approximations for t. Springer, Cham, 2018, 911–930. [Google Scholar]
  40. R. Metzler and J. Klafter, The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A Math. Gen. 37 (2004) R161. [Google Scholar]
  41. R. Metzler and J. Klafter, When translocation dynamics becomes anomalous. Biophys. J. 85 (2003) 2776. [CrossRef] [PubMed] [Google Scholar]
  42. H. Mori, A continued-fraction representation of the time-correlation functions. Prog. Theoret. Phys. 34 (1965) 399–416. [CrossRef] [Google Scholar]
  43. H. Mori, Transport, collective motion, and brownian motion. Prog. Theor. Phys. 33 (1965) 423–455. [CrossRef] [Google Scholar]
  44. R.H. Nochetto, E. Otárola and A.J. Salgado, A PDE approach to space-time fractional parabolic problems. SIAM J. Numer. Anal. 54 (2016) 848–873. [Google Scholar]
  45. D. Nualart, Fractional Brownian motion: stochastic calculus and applications. In: Vol. III of International Congress of Mathematicians. Eur. Math. Soc, Zürich, (2006) 1541–1562. [Google Scholar]
  46. H. Qian, G.M. Raymond and J.B. Bassingthwaighte, On two-dimensional fractional Brownian motion and fractional Brownian random field. J. Phys. A Math. Gen. 31 (1998) L527. [CrossRef] [PubMed] [Google Scholar]
  47. S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Yverdon Publishers (1993). [Google Scholar]
  48. J.C. Sankey, C. Yang, B.M. Zwickl, A.M. Jayich and J.G.E. Harris, Strong and tunable nonlinear optomechanical coupling in a low-loss system. Nat. Phys. 6 (2010) 707. [Google Scholar]
  49. G.J. Schütz, H. Schindler and T. Schmidt, Single-molecule microscopy on model membranes reveals anomalous diffusion. Biophys. J. 73 (1997) 1073–1080. [CrossRef] [PubMed] [Google Scholar]
  50. P. Schwille, J. Korlach and W.W. Webb, Fluorescence correlation spectroscopy with single-molecule sensitivity on cell and model membranes. Cytometry A 36 (1999) 176–182. [Google Scholar]
  51. C. Sheng and J. Shen, A space-time Petrov-Galerkin spectral method for time fractional diffusion equation. Numer. Math. Theory Methods Appl. 11 (2018) 854–876. [CrossRef] [Google Scholar]
  52. G. Shevchenko, Fractional Brownian motion in a nutshell. In: Vol. 36 of International Journal of Modern Physics: Conference Series. World Scientific (2015) 1560002. [Google Scholar]
  53. A. Taloni, A. Chechkin and J. Klafter, Generalized elastic model yields a fractional langevin equation description. Phys. Rev. Lett. 104 (2010) 160602. [CrossRef] [PubMed] [Google Scholar]
  54. I.M. Tolic’-Nørrelykke, E.-L. Munteanu, G. Thon, L. Oddershede and K. Berg-Sørensen, Anomalous diffusion in living yeast cells. Phys. Rev. Lett. 93 (2004) 078102. [CrossRef] [PubMed] [Google Scholar]
  55. M. Topaler and N. Makri, Quantum rates for a double well coupled to a dissipative bath: accurate path integral results and comparison with approximate theories. J. Chem. Phys. 101 (1994) 7500–7519. [Google Scholar]
  56. D. Venturi, H. Cho and G.E. Karniadakis, Mori–Zwanzig approach to uncertainty quantification. Vols. 1–3 of Handbook of Uncertainty Quantification. Springer, Cham (2017) 1037–1073. [CrossRef] [Google Scholar]
  57. M. Weiss, H. Hashimoto and T. Nilsson, Anomalous protein diffusion in living cells as seen by fluorescence correlation spectroscopy. Biophys. J. 84 (2003) 4043–4052. [CrossRef] [PubMed] [Google Scholar]
  58. M. Weiss, M. Elsner, F. Kartberg and T. Nilsson, Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells. Biophys. J. 87 (2004) 3518–3524. [CrossRef] [PubMed] [Google Scholar]
  59. Y. Yan, Z.-Z. Sun and J. Zhang, Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations: a second-order scheme. Commun. Comput. Phys. 22 (2017) 1028–1048. [Google Scholar]
  60. H. Yang, G. Luo, P. Karnchanaphanurach, T.-M. Louie, I. Rech, S. Cova, L. Xun and X.S. Xie, Protein conformational dynamics probed by single-molecule electron transfer. Science 302 (2003) 262–266. [Google Scholar]
  61. B. Yuttanan and M. Razzaghi, Legendre wavelets approach for numerical solutions of distributed order fractional differential equations. Appl. Math. Model. 70 (2019) 350–364. [Google Scholar]
  62. J. Zhang, D. Li and X. Antoine, Efficient numerical computation of time-fractional nonlinear Schrödinger equations in unbounded domain. Commun. Comput. Phys. 25 (2019) 218–243. [Google Scholar]
  63. R. Zwanzig, Nonlinear generalized Langevin equations. J. Stat. Phys. 9 (1973) 215–220. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you