Free Access
Volume 54, Number 2, March-April 2020
Page(s) 361 - 371
Published online 12 February 2020
  1. A. Alfonsi, Affine Diffusions and Related Processes: Simulation, Theory and Applications. Springer International Publishing, Switzerland (2015). [Google Scholar]
  2. G. Ascoli, Remarque sur une communication de mr. h. schwerdtfeger. Univ. e. Politec. Torino Rend. Sem. Mat. 11 (1952) 335–336. [Google Scholar]
  3. V. Bhansali and B. Wise, Forecasting portfolio risk in normal and stressed market. J. Risk 4 (2001) 91–106. [CrossRef] [Google Scholar]
  4. S. Boyd and L. Xiao, Least-squares covariance matrix adjustment. SIAM J. Matrix Anal. Appl. 27 (2005) 532–546. [Google Scholar]
  5. M.T. Chu, Matrix differential equations: a continuous realization process for linear algebra problems. Nonlinear Anal. Theor. Methods Appl. 18 (1992) 1125–1146. [CrossRef] [Google Scholar]
  6. M.L. Curtis, Matrix Groups. Springer-Verlag, New York (1979). [CrossRef] [Google Scholar]
  7. J.W. Dash, Quantitative Finance and Risk Management: A Physicist’ Approach. World Scientific, Singapore (2004). [CrossRef] [Google Scholar]
  8. C. Finger, A methodology for stress correlation. RiskMetrics Monitor Fourth Quarter (1997) 3–11. [Google Scholar]
  9. E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. Springer, Berlin Heidelberg (2006). [Google Scholar]
  10. S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces. Academic, New York (1978). [Google Scholar]
  11. N.J. Higham, Computing the nearest correlation matrix – a problem from finance. IMA J. Numer. Anal. 22 (2002) 329–343. [CrossRef] [MathSciNet] [Google Scholar]
  12. A.N. Kercheval, On Rebonato and Jäckel’s parametrization method for finding nearest correlation matrices. Int. J. Pure Appl. Math. 45 (2008) 383–390. [Google Scholar]
  13. P.H. Kupiecm, Stress testing in a value at risk framework. J. Derivatives 6 (1998) 7–24. [CrossRef] [Google Scholar]
  14. A. León, J.E. Peris, J. Silva and J. Subiza, A note on adjusting correlation matrices. Appl. Math. Finan. 9 (2002) 61–67. [CrossRef] [Google Scholar]
  15. W. Magnus, On the exponential solution of differential equations for a linear operator. Pure Appl. Math. VII (1954) 649–673. [CrossRef] [Google Scholar]
  16. J. Malick, A dual approach to semidefinite least-squares problems. SIAM. J. Matrix Anal. Appl. 26 (2004) 272–284. [Google Scholar]
  17. J.F.P. Martin, Some results on matrices which commute with their derivatives. SIAM. J. Appl. Math. 15 (1967) 1171–1183. [Google Scholar]
  18. H. Qi and D. Sun, A quadratically convergent Newton method for computing the nearest correlation matrix. SIAM. J. Matrix Anal. Appl. 28 (2006) 360–385. [Google Scholar]
  19. H. Qi and D. Sun, Correlation stress testing for value-at-risk: an unconstrained convex optimization approach. J. Derivatives 45 (2010) 427–462. [Google Scholar]
  20. F. Rapisarda, D. Brigo and D. Mercurio, Parameterizing correlations: a geometric interpretation. IMA J. Manag. Math. 18 (2007) 55–73. [CrossRef] [Google Scholar]
  21. R. Rebonato and P. Jäckel, The most general methodology to create a valid correlation matrix for risk management and option pricing purposes. J. Risk 2 (2000) 17–27. [CrossRef] [Google Scholar]
  22. L. Teng, M. Ehrhardt and M. Günther, Option pricing with dynamically correlated stochastic interest rate Acta. Math. Uni. Comenianae LXXXIV (2015) 179–190. [Google Scholar]
  23. L. Teng, M. Ehrhardt and M. Günther, The pricing of quanto options under dynamic correlation. J. Comput. Appl. Math. 275 (2015) 304–310. [Google Scholar]
  24. L. Teng, M. Ehrhardt and M. Günther, The dynamic correlation model and its application to the Heston model. In: Innovations in Derivatives Markets, edited by K. Glau, Z. Grbac, M. Scherer and R. Zagst. Springer, Cham (2016). [Google Scholar]
  25. L. Teng, M. Ehrhardt and M. Günther, Modelling stochastic correlation. J. Math. Ind. 6 (2016) 1–18. [Google Scholar]
  26. L. Teng, M. Ehrhardt and M. Günther, On the Heston model with stochastic correlation. Int. J. Theor. Appl. Finan. 19 (2016) 16500333. [CrossRef] [Google Scholar]
  27. L. Teng, C. van Emmerich, M. Ehrhardt and M. Günther, A versatile approach for stochastic correlation using hyperbolic functions. Int. J. Comput. Math. 93 (2016) 524–539. [Google Scholar]
  28. L. Teng, M. Ehrhardt and M. Günther, Quanto pricing in stochastic correlation models. Int. J. Theor. Appl. Finan. 21 (2018) 1850038. [CrossRef] [Google Scholar]
  29. S. Turkay, E. Epperlein and N. Christofides, Correlation stress testing for value-at-risk. J. Risk 5 (2003) 75–89. [CrossRef] [Google Scholar]
  30. F. Warner, Foundations of Differential Manifolds and Lie Group. Springer-Verlag, New York (1983). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you