Free Access
Volume 54, Number 2, March-April 2020
Page(s) 619 - 648
Published online 19 February 2020
  1. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts and P. Walter, Molecular Biology of the Cell, 5th edition. Garland Science (2007). [Google Scholar]
  2. A. Arnold, P. Markowich, G. Toscani and A. Unterreiter, On convex sobolev inequalities and the rate of convergence to equilibrium for Fokker–Planck type equations. Commun. Partial Differ. Equ. 26 (2001) 43–100. [CrossRef] [Google Scholar]
  3. M. Bagnat and K. Simons, Cell surface polarization during yeast mating. Proc. Nat. Acad. Sci. 99 (2002) 14183–14188. [CrossRef] [Google Scholar]
  4. P. Biler, G. Karch, P. Laurençot and T. Nadzieja, The 8π-problem for radially symmetric solutions of a chemotaxis model in the plane. Math. Methods Appl. Sci. 29 (2006) 1563–1583. [Google Scholar]
  5. A. Blanchet, On the parabolic-elliptic Patlak–Keller–Segel system in dimension 2 and higher, Séminaire Laurent Schwartz – EDP et applications (2011–2012). [Google Scholar]
  6. M.J. Cáceres and R. Schneider, Blow-up, steady states and long time behaviour of excitatory-inhibitory nonlinear neuron models. Kinet. Relat. Models 10 (2017) 587–612. [CrossRef] [Google Scholar]
  7. M.J. Cáceres, J.A. Carrillo and B. Perthame, Analysis of nonlinear noisy integrate & fire neuron models: blow-up and steady states. J. Math. Neurosci. 1 (2011) 7. [CrossRef] [PubMed] [Google Scholar]
  8. V. Calvez, N. Meunier and R. Voituriez, A one-dimensional Keller-Segel equation with a drift issued from the boundary. C. R. Math. Acad. Sci. Paris 348 (2010) 629–634. [CrossRef] [Google Scholar]
  9. V. Calvez, R. Hawkins, N. Meunier and R. Voituriez, Analysis of a nonlocal model for spontaneous cell polarization. SIAM J. Appl. Math. 72 (2012) 594–622. [Google Scholar]
  10. J.A. Carrillo, M.M. González, M.P. Gualdani and M.E. Schonbek, Classical solutions for a nonlinear Fokker-Planck equation arising in computational neuroscience. Commun. Partial Differ. Equ. 38 (2013) 385–409. [CrossRef] [Google Scholar]
  11. J.A. Carrillo, B. Perthame, D. Salort and D. Smets, Qualitative properties of solutions for the noisy integrate and fire model in computational neuroscience. Nonlinearity 28 (2015) 3365. [Google Scholar]
  12. W. Chen, Q. Nie, T.-M. Yi and C.-S. Chou, Modelling of yeast mating reveals robustness strategies for cell–cell interactions. PLoS Comput. Biol. 12 (2016) e1004988. [Google Scholar]
  13. C.-S. Chou, Q. Nie and T.-M. Yi, Modeling robustness tradeoffs in yeast cell polarization induced by spatial gradients. PLoS One 3 (2008) e3103. [CrossRef] [PubMed] [Google Scholar]
  14. C.-S. Chou, L. Bardwell, Q. Nie and T.-M. Yi, Noise filtering tradeoffs in spatial gradient sensing and cell polarization response. BMC Syst. Biol. 5 (2011) 196. [Google Scholar]
  15. I. Csiszár, Information-type measures of difference of probability distributions and indirect observations. Studia Sci. Math. Hungar. 2 (1967) 299–318. [MathSciNet] [Google Scholar]
  16. G. Dumont, J. Henry and C.O. Tarniceriu, Noisy threshold in neuronal models: connections with the noisy leaky integrate-and-fire model. J. Math. Biol. 73 (2016) 1413–1436. [CrossRef] [PubMed] [Google Scholar]
  17. J.M. Dyer, N.S. Savage, M. Jin, T.R. Zyla, T.C. Elston and D.J. Lew, Tracking shallow chemical gradients by actin-driven wandering of the polarization site. Curr. Biol. 23 (2013) 32–41. [CrossRef] [PubMed] [Google Scholar]
  18. L.C. Evans, Partial differential equations, 2nd edition. In: Vol. 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2010). [CrossRef] [Google Scholar]
  19. T. Freisinger, B. Klünder, J. Johnson, N. Müller, G. Pichler, G. Beck, M. Costanzo, C. Boone, R.A. Cerione, E. Frey and R. Wedlich-Soldner, Establishment of a robust single axis of cell polarity by coupling multiple positive feedback loops. Nat. Commun. 4 (2013) 1807. [CrossRef] [PubMed] [Google Scholar]
  20. H. Gajewski, On a variant of monotonicity and its application to differential equations. Nonlinear Anal.: Theory Methods App. 22 (1994) 73–80. [CrossRef] [Google Scholar]
  21. R. Hawkins, O. Bénichou, M. Piel and R. Voituriez, Rebuilding cytoskeleton roads: active transport induced polarisation of cells. Phys. Rev. E 80 (2009) 040903. [Google Scholar]
  22. C.L. Jackson and L.H. Hartwell, Courtship in s. cerevisiae: both cell types choose mating partners by responding to the strongest pheromone signal. cell 63 (1990) 1039–1051. [PubMed] [Google Scholar]
  23. M. Jin, B. Errede, M. Behar, W. Mather, S. Nayak, J. Hasty, H.G. Dohlman and T.C. Elston, Yeast dynamically modify their environment to achieve better mating efficiency. Sci. Signal. 4 (2011) ra54–ra54. [Google Scholar]
  24. I. Kim and Y. Yao, The Patlak–Keller–Segel model and its variations: properties of solutions via maximum principle. SIAM J. Math. Anal. 44 (2012) 568–602. [CrossRef] [Google Scholar]
  25. S. Kullback, On the convergence of discrimination information. IEEE Trans. Inf. Theory IT-14 (1968) 765–766. [Google Scholar]
  26. M.J. Lawson, B. Drawert, M. Khammash, L. Petzold and T.-M. Yi, Spatial stochastic dynamics enable robust cell polarization. PLoS Comput. Biol. 9 (2013) e1003139. [Google Scholar]
  27. A.T. Layton, N.S. Savage, A.S. Howell, S.Y. Carroll, D.G. Drubin and D.J. Lew, Modeling vesicle traffic reveals unexpected consequences for Cdc42p-mediated polarity establishment. Curr. Biol. 21 (2011) 184–194. [CrossRef] [PubMed] [Google Scholar]
  28. T. Lepoutre, N. Meunier and N. Muller, Cell polarisation model: the 1D case. J. Math. Pures Appl. 101 (2014) 152–171. [Google Scholar]
  29. K. Madden and M. Snyder, Cell polarity and morphogenesis in budding yeast. Ann. Rev. Microbiol. 52 (1998) 687–744. PMID: 9891811. [CrossRef] [Google Scholar]
  30. T.I. Moore, C.-S. Chou, Q. Nie, N.L. Jeon and T.-M. Yi, Robust spatial sensing of mating pheromone gradients by yeast cells. PLoS One 3 (2008) e3865. [CrossRef] [PubMed] [Google Scholar]
  31. T.I. Moore, H. Tanaka, H.J. Kim, N.L. Jeon and T.-M. Yi, Yeast G-proteins mediate directional sensing and polarization behaviors in response to changes in pheromone gradient direction. Mol. Biol. Cell 24 (2013) 521–34. [CrossRef] [PubMed] [Google Scholar]
  32. N. Muller, M. Piel, V. Calvez, R. Voituriez, J. Gonçalves-Sá, C.-L. Guo, X. Jiang, A. Murray and N. Meunier, A predictive model for yeast cell polarization in pheromone gradients. PLoS Comput. Biol. 12 (2016) e1004795. [Google Scholar]
  33. N.S. Savage, A.T. Layton and D.J. Lew, Mechanistic mathematical model of polarity in yeast. Mol. Biol. Cell 23 (2012) 1998–2013. [CrossRef] [PubMed] [Google Scholar]
  34. M.-N. Simon, C. De Virgilio, B. Souza, J.R. Pringle, A. Abo and S.I. Reed, Role for the rho-family gtpase cdc42 in yeast mating-pheromone signal pathway. Nature 376 (1995) 702–705. [Google Scholar]
  35. B.D. Slaughter, S.E. Smith and R. Li, Symmetry breaking in the life cycle of the budding yeast. Cold Spring Harbor Perspect. Biol. 1 (2009) a003384. [CrossRef] [Google Scholar]
  36. B.D. Slaughter, J.R. Unruh, A. Das, S.E. Smith, B. Rubinstein and R. Li, Non-uniform membrane diffusion enables steady-state cell polarization via vesicular trafficking. Nat. Commun. 4 (2013) 1380. [PubMed] [Google Scholar]
  37. C. Villani, Topics in optimal transportation. In: Vol. 58 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2003). [CrossRef] [Google Scholar]
  38. R. Wedlich-Soldner, S. Altschuler, L. Wu and R. Li, Spontaneous cell polarization through actomyosin-based delivery of the cdc42 gtpase. Science 299 (2003) 1231–1235. [Google Scholar]
  39. R. Wedlich-Soldner, S.C. Wai, T. Schmidt and R. Li, Robust cell polarity is a dynamic state established by coupling transport and gtpase signaling. J. Cell Biol. 166 (2004) 889–900. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you