Free Access
Issue
ESAIM: M2AN
Volume 54, Number 2, March-April 2020
Page(s) 591 - 618
DOI https://doi.org/10.1051/m2an/2019075
Published online 19 February 2020
  1. I. Aavatsmark, T. Barkve, Ø. Bøe and T. Mannseth, Discretization on non-orthogonal, quadrilateral grids for inhomogeneous, anisotropic media. J. Comput. Phys. 127 (1996) 2–14. [Google Scholar]
  2. I. Aavatsmark, G. Eigestad, R. Klausen, M. Wheeler and I. Yotov, Convergence of a symmetric MPFA method on quadrilateral grids. Comput. Geosci. 11 (2007) 333–345. [Google Scholar]
  3. M. Afif and B. Amaziane, Convergence of finite volume schemes for a degenerate convection–diffusion equation arising in flow in porous media. Comput. Methods Appl. Mech. Eng. 191 (2002) 5265–5286. [Google Scholar]
  4. B. Andreianov, F. Boyer and F. Hubert, Discrete duality finite volume schemes for Leray- Lions- type elliptic problems on general 2D meshes. Numer. Methods Partial Differ. Equ. 23 (2007) 145–195. [Google Scholar]
  5. B. Andreianov, C. Cancès and A. Moussa, A nonlinear time compactness result and applications to discretization of degenerate parabolic–elliptic PDEs. J. Funct. Anal. 273 (2017) 3633–3670. [Google Scholar]
  6. T. Arbogast and M.F. Wheeler, A nonlinear mixed finite element method for a degenerate parabolic equation arising in flow in porous media. SIAM J. Numer. Anal. 33 (1996) 1669–1687. [Google Scholar]
  7. V.I. Bogachev, Measure Theory. Springer Science & Business Media 1 (2007). [CrossRef] [Google Scholar]
  8. K. Brenner and R. Masson, Convergence of a vertex centred discretization of two-phase darcy flows on general meshes. Int. J. Finite 10 (2013) 1–37. [Google Scholar]
  9. K. Brenner, C. Cancès and D. Hilhorst, Finite volume approximation for an immiscible two-phase flow in porous media with discontinuous capillary pressure. Comput. Geosci. 17 (2013) 573–597. [Google Scholar]
  10. Z. Cai, On the finite volume element method. Numer. Math. 58 (1990) 713–735. [Google Scholar]
  11. C. Cancès, M. Cathala and C. Le Potier, Monotone corrections for generic cell-centered finite volume approximations of anisotropic diffusion equations. Numer. Math. 125 (2013) 387–417. [Google Scholar]
  12. C. Cancès and C. Guichard, Convergence of a nonlinear entropy diminishing control volume finite element scheme for solving anisotropic degenerate parabolic equations. Math. Comput. 85 (2016) 549–580. [Google Scholar]
  13. C. Cancès and C. Guichard, Numerical analysis of a robust free energy diminishing finite volume scheme for parabolic equations with gradient structure. Found. Comput. Math. 17 (2017) 1525–1584. [CrossRef] [Google Scholar]
  14. G. Chavent and J. Jaffré, Mathematical models and finite elements for reservoir simulation: single phase, multiphase and multicomponent flows through porous media. In: Vol. 17 of Stud. Math. Appl. North-Holland, Amsterdam (1986). [Google Scholar]
  15. Z. Chen, G. Huan and Y. Ma, Computational Methods for Multiphase Flows in Porous Media. SIAM 2 (2006). [Google Scholar]
  16. P. Ciarlet, The Finite Element Method for Elhptic Problems. North-Holland, Amsterdam (1978). [Google Scholar]
  17. K. Domelevo and P. Omnes, A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids. ESAIM: M2AN 39 (2005) 1203–1249. [CrossRef] [EDP Sciences] [Google Scholar]
  18. J. Droniou, Finite volume schemes for diffusion equations: introduction to and review of modern methods. Math. Models Methods Appl. Sci. 24 (2014) 1575–1619. [Google Scholar]
  19. J. Droniou and R. Eymard, A mixed finite volume scheme for anisotropic diffusion problems on any grid. Numer. Math. 105 (2006) 35–71. [Google Scholar]
  20. J. Droniou, R. Eymard, T. Gallouët, C. Guichard and R. Herbin, The Gradient Discretisation Method. Springer 82 (2018). [CrossRef] [Google Scholar]
  21. A. Ern and J.-L. Guermond, . Theory and Practice of Finite Elements. Springer Science & Business Media 159 (2013). [Google Scholar]
  22. R.E. Ewing, T. Lin and Y. Lin, On the accuracy of the finite volume element method based on piecewise linear polynomials. SIAM J. Numer. Anal. 39 (2002) 1865–1888. [Google Scholar]
  23. R. Eymard, T. Gallouët and R. Herbin, Finite volume methods. In: Vol. 7 of Handbook of Numerical Analysis. Elsevier (2000) 713–1018. [Google Scholar]
  24. R. Eymard, T. Gallout, R. Herbin and A. Michel, Convergence of a finite volume scheme for nonlinear degenerate parabolic equations. Numer. Math. 92 (2002) 41–82. [Google Scholar]
  25. R. Eymard, D. Hilhorst and M. Vohralk, A combined finite volume–nonconforming/mixed-hybrid finite element scheme for degenerate parabolic problems. Numer. Math. 105 (2006) 73–131. [Google Scholar]
  26. R. Eymard, T. Gallouët and R. Herbin, Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces. IMA J. Numer. Anal. 30 (2009) 1009–1043. [CrossRef] [MathSciNet] [Google Scholar]
  27. R. Eymard, C. Guichard and R. Herbin, Small-stencil 3D schemes for diffusive flows in porous media. ESAIM: M2AN 46 (2012) 265–290. [CrossRef] [EDP Sciences] [Google Scholar]
  28. G. Gagneux and M. Madaune-Tort, Analyse mathématique de modèles non linéaires de l’ingénierie pétrolière. Springer Science & Business Media 22 (1995). [Google Scholar]
  29. M. Ghilani, E.H. Quenjel and M. Saad, Convergence of a positivity-preserving finite volume scheme for compressible two-phase flows in anisotropic porous media: the densities are depending on the physical pressures. submitted (2019). [Google Scholar]
  30. M. Ghilani, E.H. Quenjel and M. Saad, Positive control volume finite element scheme for a degenerate compressible two-phase flow in anisotropic porous media. Comput. Geosci. 23 (2019) 55–79. [Google Scholar]
  31. R. Helmig, Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of Hydrosystems. Springer-Verlag (1997). [Google Scholar]
  32. R. Herbin, F. Hubert, Benchmark on discretization schemes for anisotropic diffusion problems on general grids, edited by R. Eymard and J.-M. Herard. In: Finite Volumes for Complex Applications V. Wiley (2008) 659–692. [Google Scholar]
  33. W. Hundsdorfer and J.G. Verwer, Numerical Solution of Time-dependent Advection-diffusion-reaction Equations. Springer Science & Business Media 33 (2013). [Google Scholar]
  34. M. Ibrahim and M. Saad, On the efficacy of a control volume finite element method for the capture of patterns for a volume-filling chemotaxis model. Comput. Math. App. 68 (2014) 1032–1051. [Google Scholar]
  35. R.J. LeVeque, Finite Volume Methods for Hyperbolic Problems. Cambridge University Press 31 (2002). [CrossRef] [Google Scholar]
  36. J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod (1969). [Google Scholar]
  37. A.A.H. Oulhaj, C. Cancès and C. Chainais-Hillairet, Numerical analysis of a nonlinearly stable and positive Control Volume Finite Element scheme for Richards equation with anisotropy. ESAIM: M2AN 52 (2018) 1533–1567. [CrossRef] [EDP Sciences] [Google Scholar]
  38. E.H. Quenjel, M. Saad, M. Ghilani and M. Bessemoulin-Chatard, On the positivity of a discrete duality finite volume scheme for degenerate nonlinear diffusion equations. submitted (2018). [Google Scholar]
  39. B. Saad and M. Saad, Study of full implicit petroleum engineering finite-volume scheme for compressible two-phase flow in porous media. SIAM J. Numer. Anal. 51 (2013) 716–741. [Google Scholar]
  40. M. Schneider, L. Agélas, G. Enchéry and B. Flemisch, Convergence of nonlinear finite volume schemes for heterogeneous anisotropic diffusion on general meshes. J. Comput. Phys. 351 (2017) 80–107. [Google Scholar]
  41. R.S. Varga, Matrix Iterative Analysis. Springer Science & Business Media 27 (2009). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you