Free Access
Issue
ESAIM: M2AN
Volume 54, Number 2, March-April 2020
Page(s) 705 - 726
DOI https://doi.org/10.1051/m2an/2019080
Published online 13 March 2020
  1. W. Cao, C.-W. Shu, Y. Yang and Z. Zhang, Superconvergence of discontinuous Galerkin method for scalar nonlinear hyperbolic equations. SIAM J. Numer. Anal. 56 (2018) 732–765. [Google Scholar]
  2. P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North Holland, Amsterdam, New York (1978). [Google Scholar]
  3. B. Cockburn and C.-W. Shu, TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52 (1989) 411–435. [Google Scholar]
  4. B. Cockburn and C.-W. Shu, The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35 (1998) 2440–2465. [Google Scholar]
  5. B. Cockburn and C.-W. Shu, The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141 (1998) 199–224. [Google Scholar]
  6. B. Cockburn, S.-Y. Lin and C.-W. Shu, TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems. J. Comput. Phys. 84 (1989) 90–113. [Google Scholar]
  7. B. Cockburn, S. Hou and C.-W. Shu, The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case. Math. Comput. 54 (1990) 545–581. [Google Scholar]
  8. B. Cockburn, B. Dong and J. Guzmán, Optimal convergence of the original DG method for the transport-reaction equation on special meshes. SIAM J. Numer. Anal. 46 (2008) 1250–1265. [Google Scholar]
  9. S. Gottlieb, C.-W. Shu and E. Tadmor, Strong stability-preserving high-order time discretization methods. SIAM Rev. 43 (2001) 89–112. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  10. Y. Liu, C.-W. Shu and M. Zhang, Optimal error estimates of the semidiscrete central discontinuous Galerkin methods for linear hyperbolic equations. SIAM J. Numer. Anal. 56 (2018) 520–541. [Google Scholar]
  11. X. Meng, C.-W. Shu and B. Wu, Optimal error estimates for discontinuous Galerkin methods based on upwind-biased fluxes for linear hyperbolic equations. Math. Comput. 85 (2016) 1225–1261. [Google Scholar]
  12. S. Osher, Riemann solvers, the entropy conditions, and difference. SIAM J. Numer. Anal. 21 (1984) 217–235. [Google Scholar]
  13. W.H. Reed and T.R. Hill, Triangular Mesh Methods for the Neutron Transport Equation. Los Alamos Scientific Laboratory report LA-UR-74-479, Los Alamos, NM (1973). [Google Scholar]
  14. G.R. Richter, An optimal-order error estimate for the discontinuous Galerkin method. Math. Comput. 50 (1988) 75–88. [Google Scholar]
  15. Y. Xu and C.-W. Shu, Optimal error estimates of the semidiscrete local discontinuous galerkin methods for high order wave equations. SIAM J. Numer. Anal. 50 (2012) 79–104. [Google Scholar]
  16. Q. Zhang and C.-W. Shu, Error estimates to smooth solutions of Runge–Kutta discontinuous Galerkin methods for scalar conservation laws. SIAM J. Numer. Anal. 42 (2004) 641–666. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you