Free Access
Volume 54, Number 3, May-June 2020
Page(s) 879 - 928
Published online 01 April 2020
  1. G. Allaire, Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992) 1482–1518. [CrossRef] [MathSciNet] [Google Scholar]
  2. J.M. Ball, C. Chu and R.D. James, Hysteresis during stress-induced variant rearrangement. J. Phys. IV 5 (1995) C8–245–C8-251. [Google Scholar]
  3. H.H. Bauschke and P.L. Combettes, Convex analysis and monotone operator theory in Hilbert spaces, 1st edition. In: CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, Cham (2011). [CrossRef] [MathSciNet] [Google Scholar]
  4. J. Bezanson, A. Edelman, S. Karpinski and V. Shah, Julia: a fresh approach to numerical computing. SIAM Rev. 59 (2017) 65–98. [CrossRef] [Google Scholar]
  5. A. Bourgeat, A. Mikelić and S. Wright, Stochastic two-scale convergence in the mean and applications. J. Reine Angew. Math. 456 (1994) 19–51. [MathSciNet] [Google Scholar]
  6. A. Braides, Loss of polyconvexity by homogenization. Arch. Rational Mech. Anal. 127 (1994) 183–190. [CrossRef] [Google Scholar]
  7. B. Dacorogna, Direct methods in the calculus of variations, 2nd edition. In: Vol. 78 of Applied Mathematical Sciences. Springer (2008). [Google Scholar]
  8. N. Dunford and J.T. Schwartz, Linear operators. I. general theory. With the assistance of W.G. Bade and R.G. Bartle. In Vol. 7 of Pure and Applied Mathematics. Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London (1958). [Google Scholar]
  9. M. Heida, Stochastic homogenization of rate-independent systems and applications. Continuum Mech. Thermodyn. 29 (2017) 853–894. [CrossRef] [Google Scholar]
  10. M. Heida and B. Schweizer, Non-periodic homogenization of infinitesimal strain plasticity equations. ZAMM – J. Appl. Math. Mech. 96 (2016) 5–23. [CrossRef] [Google Scholar]
  11. V.V. Jikov, S.M. Kozlov and O.A. Olenik, Homogenization of Differential Operators and Integral Functionals. Springer-Verlag, Berlin (1994). [CrossRef] [Google Scholar]
  12. M. Kaliske and H. Rothert, Constitutive approach to rate-independent properties of filled elastomers. Int. J. Solids Struct. 35 (1998) 2057–2071. [Google Scholar]
  13. M. Klüppel, Filler-Reinforced Elastomers/Scanning Force Microscopy, edited by B. Capella, M. Geuss, M. Klüppel, M. Munz, E. Schulz, H. Sturm.The role of disorder in filler reinforcement of elastomers on various length scales. Springer, Berlin, Heidelberg (2003) 1–86. [Google Scholar]
  14. A.A. Likhachev and K. Ullakko, Magnetic-field-controlled twin boundaries motion and giant magneto-mechanical effects in Ni–Mn–Ga shape memory alloy. Phys. Lett. A 275 (2000) 142–151. [Google Scholar]
  15. A. Lion, A constitutive model for carbon black filled rubber: experimental investigations and mathematical representation. Continuum Mech. Thermodyn. 8 (1996) 153–169. [CrossRef] [Google Scholar]
  16. W.V. Mars and A. Fatemi, Factors that affect the fatigue life of rubber: a literature survey. Rubber Chem. Technol. 77 (2004) 391–412. [CrossRef] [Google Scholar]
  17. B. Marvalova, Viscoelastic properties of filled rubber. Experimental observations and material modelling. Eng. Mech. 14 (2007) 81–89. [Google Scholar]
  18. C. Miehe and J. Keck, Superimposed finite elastic–viscoelastic–plastoelastic stress response with damage in filled rubbery polymers. Experiments, modelling and algorithmic implementation. J. Mech. Phys. Solids 48 (2000) 323–365. [Google Scholar]
  19. A. Mielke, On evolutionary Γ-convergence for gradient systems, Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits and Ergodicity, edited by A. Muntean, J. Rademacher and A. Zagaris. In Lecture Notes in Applied Mathematics and Mechanics, Springer, 2015, pp. 187–249. [Google Scholar]
  20. G. Nguetseng, A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989) 608–623. [CrossRef] [MathSciNet] [Google Scholar]
  21. R.T. Rockafellar, Convex analysis. In Vol. 28 of Princeton Mathematical Series. Princeton University Press (1970). [Google Scholar]
  22. T. Roubček, Nonlinear partial differential equations with applications, 2nd edition. In Vol. 153 of International Series of Numerical Mathematics. Birkhauser (2013). [Google Scholar]
  23. L. Tartar, Memory effects and homogenization. Arch. Ration. Mech. Anal. 111 (1990) 121–133. [Google Scholar]
  24. L.R.G. Treloar, The Physics of Rubber Elasticity. Oxford University Press, USA (1975). [Google Scholar]
  25. C. Truesdell and W. Noll, The Non-linear Field Theories of Mechanics. 3rd ed. Springer-Verlag, Berlin (2004). [CrossRef] [Google Scholar]
  26. A. Visintin, Differential models of hysteresis. In Vol. 111 of Applied Mathematical Sciences, Springer-Verlag, Berlin (1994). [CrossRef] [Google Scholar]
  27. V.V. Zhikov and A.L. Pyatnitskii, Homogenization of random singular structures and random measures. Izvestiya: Math. 70 (2006) 19. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you