Free Access
Issue
ESAIM: M2AN
Volume 54, Number 3, May-June 2020
Page(s) 845 - 878
DOI https://doi.org/10.1051/m2an/2019079
Published online 01 April 2020
  1. S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. 3rd ed. Springer, New York (2008). [CrossRef] [Google Scholar]
  2. M. Cassier, P. Joly and M. Kachanovska, Mathematical models for dispersive electromagnetic waves: an overview. Comput. Math. Appl. 74 (2017) 2792–2830. [Google Scholar]
  3. J. Chabassier and S. Imperiale, Stability and dispersion analysis of improved time discretization for simply supported prestressed Timoshenko systems. Application to the stiff piano string. Wave Motion 50 (2012) 456–480. [Google Scholar]
  4. J. Chabassier and S. Imperiale, Introduction and study of fourth order theta schemes for linear wave equations. J. Comput. Appl. Math. 245 (2013) 194–212. [Google Scholar]
  5. J. Chabassier and S. Imperiale, Space/time convergence analysis of a class of conservative schemes for linear wave equations. C.R. Math. 355 (2017) 282–289. [CrossRef] [Google Scholar]
  6. G. Cohen, High-order Numerical Methods for Transient Wave Equations. Springer-Verlag (2001). [Google Scholar]
  7. G. Cohen, P. Joly and N. Tordjman, Higher-order finite elements with mass-lumping for the 1D wave equation. Finite Element Anal. Des. 16 (1994) 329–336. [CrossRef] [Google Scholar]
  8. G. Cohen, P. Joly, J.E. Roberts and N. Tordjman, Higher order triangular finite elements with mass lumping for the wave equation. SIAM J. Numer. Anal. 38 (2001) 2047–2078. [Google Scholar]
  9. R. Dautray and J.-L. Lions, Mathematical analysis and numerical methods for science and technology, In: Vols 5 and 6 of Evolution Problems I and II. Springer-Verlag, Berlin (2000). [Google Scholar]
  10. S.S. Dragomir, Some Gronwall type inequalities and applications. Nova Science Pub Incorporated (2003). [Google Scholar]
  11. S. Ervedoza, A. Marica and E. Zuazua, Numerical meshes ensuring uniform observability of one-dimensional waves: construction and analysis. IMA J. Numer. Anal. 36 (2016) 503–542. [CrossRef] [Google Scholar]
  12. K. Feng, Difference schemes for Hamiltonian formalism and symplectic geometry. J. Comput. Math. 4 (1986) 279–289. [Google Scholar]
  13. P. Freitas and E. Zuazua, Stability results for the wave equation with indefinite damping. J. Differ. Equ. 132 (1996) 338–352. [Google Scholar]
  14. P. Freitas, M. Grinfeld and P.A. Knight, Stability of finite-dimensional systems with indefinite damping. Adv. Math. Sci. App. 17 (1997) 435–446. [Google Scholar]
  15. J.C. Gilbert and P. Joly, Higher order time stepping for second order hyperbolic problems and optimal CFL conditions. Partial Differ. Equ. 16 (2008) 67–93. [Google Scholar]
  16. P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985). [Google Scholar]
  17. M.J. Grote and T. Mitkova, High-order explicit local time-stepping methods for damped wave equations. J. Comput. Appl. Math. 239 (2013) 270–289. [Google Scholar]
  18. M.J. Grote, A. Schneebeli and D. Schötzau, Discontinuous Galerkin finite element method for the wave equation. SIAM J. Numer. Anal. 44 (2006) 2408–2431. [Google Scholar]
  19. E. Hairer, C. Lubich and G. Wanner, Geometric numerical integration. Structure-preserving algorithms for ordinary differential equations, Springer Series in Computational Mathematics (2006). [Google Scholar]
  20. P. Joly, Topics in computational wave propagation. “Variational methods for time-dependent wave propagation problems”. In: Vol. 31 of Lecture Notes in Computational Science and Engineering. Springer, Berlin (2003) 201–264. [CrossRef] [Google Scholar]
  21. P. Joly, The mathematical model for elastic wave propagation. Effective computational methods for wave propagation. Numer. Insights Chapman Hall/CRC 5 (2008) 247–266. [CrossRef] [Google Scholar]
  22. T. Kato, Perturbation theory for linear operators. In: Vol. 132 of Classics in Mathematics. Springer-Verlag, Berlin Heidelberg (1995). [CrossRef] [Google Scholar]
  23. G.R. Shubin and J.B. Bell, A modified equation approach to constructing fourth-order methods for acoustic wave propagation. Soc. Ind. Appl. Math. J. Sci. Stat. Comput. 8 (1987) 135–151. [CrossRef] [MathSciNet] [Google Scholar]
  24. M. Suzuki, Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations. Phys. Lett. A 146 (1990) 319–323. [Google Scholar]
  25. J.G. Verwer, Runge-Kutta methods and viscous wave equations. Numer. Math. 112 (2009) 485–507. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you