Free Access
Volume 54, Number 3, May-June 2020
Page(s) 1003 - 1023
Published online 28 April 2020
  1. S. Almi, Quasi-static hydraulic crack growth driven by Darcy’s law. Adv. Calc. Var. 11 (2018) 161–191. [CrossRef] [Google Scholar]
  2. S. Almi, G. Dal Maso and R. Toader, Quasi-static crack growth in hydralic fracture. Nonlinear Anal. 109 (2014) 301–318. [CrossRef] [Google Scholar]
  3. L. Ambrosio and V.M. Tortorelli, Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence. Commun. Pure Appl. Math. 43 (1990) 999–1036. [Google Scholar]
  4. L. Ambrosio and V.M. Tortorelli, On the approximation of free discontinuity problems. Boll. Unione. Mat. Ital. 6 (1992) 105–123. [Google Scholar]
  5. L. Ambrosio, A. Coscia and G. Dal Maso, Fine properties of functions with bounded deformation. Arch. Ration. Mech. Anal. 139 (1997) 201–238. [Google Scholar]
  6. L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford Math. Monogr. Clarendon Press, New York (2000). [Google Scholar]
  7. A. Bach, A. Braides and C. Zeppieri, Quantitative analysis of finite-difference approximations of free-discontinuity problems Preprint arXiv:1802.05346 (2018) . [Google Scholar]
  8. P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, R. Kornhuber, M. Ohlberger and O. Sander, A generic grid interface for parallel and adaptive scientific computing. Part II: implementation and tests in DUNE. Computing 82 (2008) 121–138. [CrossRef] [MathSciNet] [Google Scholar]
  9. G. Bellettini and A. Coscia, Discrete approximation of a free discontinuity problem. Numer. Funct. Anal. Optim. 15 (1994) 201–224. [Google Scholar]
  10. G. Bellettini, A. Coscia and G. Dal Maso, Compactness and lower semicontinuity properties in SBD(Ω). Math. Z. 228 (1998) 337–351. [CrossRef] [Google Scholar]
  11. M.A. Biot, Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 26 (1955) 182–185. [Google Scholar]
  12. M.J. Borden, C.V. Verhoosel, M.A. Scott, T.J.R. Hughes and C.M. Landis, A phase-field description of dynamic brittle fracture. Comput. Methods Appl. Mech. Eng. 217–220 (2012) 77–95. [Google Scholar]
  13. B. Bourdin, G.A. Francfort and J.-J. Marigo, Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 48 (2000) 797–826. [Google Scholar]
  14. B. Bourdin, C. Chukwudozie and K. Yoshioka, A Variational Approach to the Numerical Simulation of Hydraulic Fracturing. Society of Petroleum Engineers (2012). [Google Scholar]
  15. B. Bourdin, C. Chukwudozie and K. Yoshioka, A variational approach to the modeling and numerical simulation of hydraulic fracturing under in-situ stresses.In: Proceedings of the 38th Workshop on Geothermal Reservoir Engineering . Stanford Geothermal Program Stanford, Calif (2013). [Google Scholar]
  16. A. Braides, Approximation of Free-discontinuity Problems. Lecture Notes in Mathematics . Springer Verlag, Berlin (1998). [CrossRef] [Google Scholar]
  17. A. Braides, Γ-convergence for beginners. In: Vol. 22 of Oxford Lecture Series in Mathematics and its Applications . Oxford University Press, Oxford (2002). [Google Scholar]
  18. A. Chambolle, An approximation result for special functions with bounded deformation. J. Math. Pures Appl. 83 (2004) 929–954. [Google Scholar]
  19. A. Chambolle, Addendum to: “An approximation result for special functions with bounded deformation” [J. Math. Pures Appl. 83 (2004) 929–954; MR2074682]. J. Math. Pures Appl. 84 (2005) 137–145. [Google Scholar]
  20. A. Chambolle and V. Crismale, Compactness and lower semicontinuity in GSBD . J. Eur. Math. Soc. (JEMS) Preprint arXiv:1802.03302v2 (2018). [Google Scholar]
  21. A. Chambolle and V. Crismale, A density result in GSBD p with applications to the approximation of brittle fracture energies. Arch. Ration. Mech. Anal. 232 (2019) 1329–1378. [Google Scholar]
  22. P.G. Ciarlet, The finite-element method for elliptic problems. In: Classics in Applied Mathematics . SIAM, Philadelphia (2002). [Google Scholar]
  23. V. Crismale, G. Scilla and F. Solombrino, A derivation of Griffith functionals from discrete finite-difference models. Available online at (2019). [Google Scholar]
  24. G. Dal Maso, An introduction to Γ-convergence. In: Vol. 8 of Progress in Nonlinear Differential Equations and Their Applications . Birkhäuser, Boston (1993). [Google Scholar]
  25. G. Dal Maso, Generalised functions of bounded deformation. J. Eur. Math. Soc. (JEMS) 15 (2013) 1943–1997. [CrossRef] [Google Scholar]
  26. E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale. Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. 58 (1975) 842–850. [Google Scholar]
  27. C. Engwer and L. Schumacher, A phase field approach to pressurized fractures using discontinuous Galerkin methods. Math. Comput. Simul. 137 (2017) 266–285. [Google Scholar]
  28. M. Focardi, On the variational approximation of free-discontinuity problems in the vectorial case. Math. Models Methods Appl. Sci. 11 (2001) 663–684. [Google Scholar]
  29. M. Focardi and F. Iurlano, Asymptotic analysis of Ambrosio-Tortorelli energies in linearized elasticity. SIAM J. Math. Anal. 46 (2014) 2936–2955. [CrossRef] [MathSciNet] [Google Scholar]
  30. G.A. Francfort and J.-J. Marigo, Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46 (1998) 1319–1342. [Google Scholar]
  31. M. Friedrich and F. Solombrino, Quasistatic crack growth in 2d-linearized elasticity. Ann. Inst. Henri Poincaré C, Anal. non lin. 35 (2018) 27–64. [CrossRef] [Google Scholar]
  32. C. Gräser, U. Sack and O. Sander, Truncated nonsmooth Newton multigrid methods for convex minimization problems. In: Domain Decomposition Methods in Science and Engineering XVIII . Springer (2009) 129–136. [CrossRef] [Google Scholar]
  33. A.A. Griffith, The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. London Ser. A 221 (1920) 163–198. [Google Scholar]
  34. F. Iurlano, A density result for GSBD and its application to the approximation of brittle fracture energies. Calc. Var. Partial Differ. Equ. 51 (2014) 315–342. [Google Scholar]
  35. C. Kuhn and. R. Müller, A continuum phase field model for fracture. Eng. Fract. Mech. 77 (2010) 3625–3634. Computational Mechanics in Fracture and Damage: A Special Issue in Honor of Prof. Gross. [Google Scholar]
  36. C. Miehe, M. Hofacker and F. Welschinger, A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput. Methods Appl. Mech. Eng. 199 (2010) 2765–2778. [Google Scholar]
  37. A. Mikelic, M.F. Wheeler and T. Wick, A phase-field method for propagating fluid-filled fractures coupled to a surrounding porous medium. Multiscale Model. Simul. 13 (2015) 367–398. [Google Scholar]
  38. A. Mikelić, M.F. Wheeler and T. Wick, A quasi-static phase-field approach to pressurized fractures. Nonlinearity 28 (2015) 1371–1399. [Google Scholar]
  39. D. Mumford and J. Shah, Optimal approximation by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42 (1989) 577–685. [Google Scholar]
  40. I.N. Sneddon, The distribution of stress in the neighbourhood of a crack in an elastic solid. Proc. R. Soc. Lond. A Math. Phys. Sci. 187 (1946) 229–260. [Google Scholar]
  41. R. Temam and G. Strang, Functions of bounded deformation. Arch. Ration. Mech. Anal. 75 (1980) 7–21. [Google Scholar]
  42. M.F. Wheeler, T. Wick and W. Wollner, An augmented-Lagrangian method for the phase-field approach for pressurized fractures. Comput. Methods Appl. Mech. Eng. 271 (2014) 69–85. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you