Free Access
Issue
ESAIM: M2AN
Volume 54, Number 3, May-June 2020
Page(s) 929 - 956
DOI https://doi.org/10.1051/m2an/2019082
Published online 09 April 2020
  1. G. Bao and H. Wu, Convergence analysis of the perfectly matched layer problems for time-harmonic Maxwell’s equations. SIAM J. Numer. Anal. 43 (2005) 2121–2143. [Google Scholar]
  2. G. Bao, Z. Chen and H. Wu, An adaptive finite element method for diffraction gratings. J. Opt. Soc. Am. A 22 (2005) 1106–1114. [Google Scholar]
  3. G. Bao, P. Li and H. Wu, An adaptive finite element method with perfectly matched absorbing layers for wave scattering by periodic structures. Math. Comput. 79 (2010) 1–34. [Google Scholar]
  4. J.P. Bérénger, A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114 (1994) 185–200. [Google Scholar]
  5. J.H. Bramble and J.E. Pasciak, Analysis of a Cartesian PML approximation to the three dimensional electromagnetic wave scattering problem. Int. J. Numer. Anal. Modeling 9 (2012) 543–561. [Google Scholar]
  6. J.H. Bramble and J.E. Pasciak, Analysis of a Cartesian PML approximation to acoustic scattering problems in ℝ2 and ℝ3. J. Comput. Appl. Math. 247 (2013) 209–230. [Google Scholar]
  7. J.H. Bramble, J.E. Pasciak and D. Trenev, Analysis of a finite PML approximation to the three dimensional elastic wave scattering problem. Math. Comput. 79 (2010) 2079–2101. [Google Scholar]
  8. A. Buffa, M. Costabel and D. Sheen, On traces for in Lipschitz domains. J. Math. Anal. Appl. 276 (2002) 845–867. [Google Scholar]
  9. Z. Chen, Convergence of the time-domain perfectly matched layer method for acoustic problems. Int. J. Numer. Anal. Model. 6 (2009) 124–146. [Google Scholar]
  10. J. Chen and Z. Chen, An adaptive perfectly matched layer technique for 3-D time-harmonic electromagnetic scattering problems. Math. Comput. 77 (2008) 673–698. [Google Scholar]
  11. Z. Chen and X. Liu, An adaptive perfectly matched layer technique for time-harmonic scattering problems. SIAM J. Numer. Anal. 43 (2005) 645–671. [Google Scholar]
  12. Z. Chen and H. Wu, An adaptive finite element method with perfectly matched absorbing layers for the wave scattering by periodic structures. SIAM J. Numer. Anal. 41 (2003) 799–826. [Google Scholar]
  13. Z. Chen and X. Wu, An adaptive uniaxial perfectly matched layer method for time-harmonic scattering problems. Numer. Math.: Theory Methods App. 1 (2008) 113–137. [Google Scholar]
  14. Z. Chen and X. Wu, Long-time stability and convergence of the uniaxial perfectly matched layer method for time-domain acoustic scattering problems. SIAM J. Numer. Anal. 50 (2012) 2632–2655. [Google Scholar]
  15. Z. Chen and W. Zheng, Convergence of the uniaxial perfectly matched layer method for time-harmonic scattering problems in two-layer media. SIAM J. Numer. Anal. 48 (2010) 2158–2185. [Google Scholar]
  16. Z. Chen and W. Zheng, PML method for electromagnetic scattering problem in a two-layer medium. SIAM J. Numer. Anal. 55 (2017) 2050–2084. [Google Scholar]
  17. Z. Chen, T. Cui and L. Zhang, An adaptive uniaxial perfectly matched layer method for time harmonic Maxwell scattering problems. Numer. Math. 125 (2013) 639–677. [Google Scholar]
  18. Z. Chen, X. Xiang and X. Zhang, Convergence of the PML method for elastic wave scattering problems. Math. Comput. 85 (2016) 2687–2714. [Google Scholar]
  19. W.-C. Chew, Waves and Fields in Inhomogenous Media. Van Nodtrand Reimhold, New York (1990). [Google Scholar]
  20. F. Collino and P. Monk, The perfectly matched layer in curvilinear coordinates. SIAM J. Sci. Comput. 19 (1998) 2061–2090. [Google Scholar]
  21. P.M. Cutzach and C. Hazard, Existence and uniqueness and analyticity properties for electromagnetic scattering in a two-layered medium. Math. Meth. Appl. Sci. 21 (1998) 433–461. [CrossRef] [Google Scholar]
  22. T. Hagstrom, Radiation boundary conditions for the numerical simulation of waves. Acta Numer. 8 (1999) 47–106. [CrossRef] [Google Scholar]
  23. T. Hohage, F. Schmidt and L. Zschiedrich, Solving time-harmonic scattering problems based on the pole condition. II: convergence of the PML method. SIAM J. Math. Anal. 35 (2003) 547–560. [CrossRef] [Google Scholar]
  24. X. Jiang and W. Zheng, Adaptive uniaxial perfectly matched layer method for multiple scattering problems. Comput. Methods Appl. Mech. Eng. 201 (2012) 42–52. [Google Scholar]
  25. M. Lassas and E. Somersalo, On the existence and convergence of the solution of PML equations. Computing 60 (1998) 229–241. [CrossRef] [Google Scholar]
  26. M. Lassas and E. Somersalo, Analysis of the PML equations in general convex geometry. Proc. R. Soc. Edinburg (2001) 1183–1207. [CrossRef] [Google Scholar]
  27. P. Monk, Finite Element Methods for Maxwell’s Equations. Oxford University Press (2003). [CrossRef] [Google Scholar]
  28. J.C. Nédélec, Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems. Springer-Verlag, New York (2001). [Google Scholar]
  29. X. Wu and W. Zheng, An adaptive perfectly matched layer method for multiple cavity scattering problems. Commun. Comput. Phys. 19 (2016) 534–558. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you