Free Access
Issue
ESAIM: M2AN
Volume 54, Number 3, May-June 2020
Page(s) 957 - 976
DOI https://doi.org/10.1051/m2an/2019091
Published online 16 April 2020
  1. H. Ammari, G. Ciraolo, H. Kang, H. Lee and G.W. Milton, Spectral theory of a Neumann–Poincaré-type operator and analysis of cloaking due to anomalous localized resonance. Arch. Ration. Mech. Anal. 208 (2013) 667–692. [Google Scholar]
  2. H. Ammari, G. Ciraolo, H. Kang, H. Lee and G.W. Milton, Spectral theory of a Neumann–Poincaré-type operator and analysis of cloaking due to anomalous localized resonance II. Contemp. Math. 615 (2014) 1–14. [CrossRef] [Google Scholar]
  3. H. Ammari, Y. Deng and P. Millien, Surface plasmon resonance of nanoparticles and applications in imaging. Arch. Ration. Mech. Anal. 220 (2016) 109–153. [Google Scholar]
  4. H. Ammari, B. Fitzpatrick, H. Kang, M. Ruiz, S. Yu and H. Zhang, Mathematical and computational methods in photonics and phononics, In Vol. 235 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2018). [CrossRef] [Google Scholar]
  5. H. Ammari, P. Millien, M. Ruiz and H. Zhang, Mathematical analysis of plasmonic nanoparticles: The scalar case. Arch. Ration. Mech. Anal. 224 (2017) 597–658. [Google Scholar]
  6. H. Ammari, M. Ruiz, S. Yu and H. Zhang, Mathematical analysis of plasmonic resonances for nanoparticles: The full Maxwell equations. J. Differ. Equ. 261 (2016) 3615–3669. [Google Scholar]
  7. K. Ando, Y. Ji, H. Kang, K. Kim and S. Yu, Spectral properties of the Neumann-Poincaré operator and cloaking by anomalous localized resonance for the elastostatic system. Eur. J. Appl. Math. 29 (2018) 189–225. [Google Scholar]
  8. K. Ando, Y. Ji, H. Kang, K. Kim and S. Yu, Cloaking by anomalous localized resonance for linear elasticity on a coated structure. SIAM J. Math. Anal. 49 (2017) 4232–4250. [CrossRef] [Google Scholar]
  9. K. Ando, H. Kang and H. Liu, Plasmon resonance with finite frequencies: A validation of the quasi-static approximation for diametrically small inclusions. SIAM J. Appl. Math. 76 (2016) 731–749. [Google Scholar]
  10. K. Ando, H. Kang and Y. Miyanishi, Elastic Neumann-Poincaré operators on three dimensional smooth domains: Polynomial compactness and spectral structure. Int. Math. Res. Not. 2019 (2019) 3883–3900. [CrossRef] [Google Scholar]
  11. K. Ando, H. Kang and Y. Miyanishi, Spectral structure of elastic Neumann-Poincaré operators. J. Phys.: Conf. Ser. 965 (2018) 012027. [CrossRef] [Google Scholar]
  12. E. Blåsten and H. Liu, Scattering by curvatures, radiationless sources, transmission eigenfunctions and inverse scattering problems, Preprint: arXiv:1808.01425 (2018). [Google Scholar]
  13. G. Bouchitté and B. Schweizer, Cloaking of small objects by anomalous localized resonance. Q. J. Mech. Appl. Math. 63 (2010) 438–463. [Google Scholar]
  14. O.P. Bruno and S. Lintner, Superlens-cloaking of small dielectric bodies in the quasistatic regime. J. Appl. Phys. 102 (2007) 124502. [Google Scholar]
  15. D. Chung, H. Kang, K. Kim and H. Lee, Cloaking due to anomalous localized resonance in plasmonic structures of confocal ellipses. SIAM J. Appl. Math. 74 (2014) 1691–1707. [Google Scholar]
  16. Y. Deng, H. Li and H. Liu, On spectral properties of Neumann-Poincaré operator and plasmonic resonances in 3D elastostatics. J. Spectr. Theory 9 (2019) 767–789. [CrossRef] [Google Scholar]
  17. Y. Deng, H. Li and H. Liu, Analysis of surface polariton resonance for nanoparticles in elastic system. Preprint: arXiv:1804.05480 (2018). [Google Scholar]
  18. E. Blåsten, H. Li, H. Liu, Y. Wang, Localization and geometrization in plasmon resonances and geometric structures of Neumann-Poincaré eigenfunctions. Preprint: arXiv:1809.08533 (2018). [Google Scholar]
  19. J. Helsing, H. Kang and M. Lim, Classification of spectra of the Neumann-Poincaré operator on planar domains with corners by resonance. Ann. Inst. Henri. Poincaré-AN 34 (2017) 991–1011. [CrossRef] [Google Scholar]
  20. Y. Ji and H. Kang, A concavity condition for existence of a negative Neumann-Poincaré eigenvalue in three dimensions. Preprint: arXiv:1808.10621 (2018). [Google Scholar]
  21. H. Kang and D. Kawagoe, Surface Riesz transforms and spectral property of elasticNeumann–Poincaré operators on less smooth domains in three dimensions. Preprint: arXiv:1806.02026 (2018). [Google Scholar]
  22. H. Kang, M. Lim and S. Yu, Spectral resolution of the Neumann-Poincaré operator on intersecting disks and analysis of plasmon resonance. Arch. Ration. Mech. Anal. 226 (2017) 83–115. [Google Scholar]
  23. H. Kettunen, M. Lassas and P. Ola, On absence and existence of the anomalous localized resonace without the quasi-static approximation. SIAM J. Appl. Math. 78 (2018) 609–628. [Google Scholar]
  24. D.M. Kochmann and G.W. Milton, Rigorous bounds on the effective moduli of composites and inhomogeneous bodies with negative-stiffness phases. J. Mech. Phys. Solids 71 (2014) 46–63. [Google Scholar]
  25. R.V. Kohn, J. Lu, B. Schweizer and M.I. Weinstein, A variational perspective on cloaking by anomalous localized resonance. Comm. Math. Phys. 328 (2014) 1–27. [CrossRef] [Google Scholar]
  26. R.S. Lakes, T. Lee, A. Bersie and Y. Wang, Extreme damping in composite materials with negative-stiffness inclusions. Nature 410 (2001) 565–567. [Google Scholar]
  27. H. Li and H. Liu, On anomalous localized resonance for the elastostatic system. SIAM J. Math. Anal. 48 (2016) 3322–3344. [CrossRef] [Google Scholar]
  28. H. Li and H. Liu, On three-dimensional plasmon resonance in elastostatics. Annali di Matematica Pura ed Applicata 196 (2017) 1113–1135. [CrossRef] [Google Scholar]
  29. H. Li and H. Liu, On anomalous localized resonance and plasmonic cloaking beyond the quasistatic limit. Proc. R. Soc. A 474 20180165. [Google Scholar]
  30. H. Li, J. Li and H. Liu, On quasi-static cloaking due to anomalous localized resonance in R3. SIAM J. Appl. Math. 75 (2015) 1245–1260. [Google Scholar]
  31. H. Li, J. Li and H. Liu, On novel elastic structures inducing plariton resonances with finite frequencies and cloaking due to anomalous localized resonance. J. Math. Pures Appl. 120 (2018) 195–219. [Google Scholar]
  32. H. Li, S. Li, H. Liu and X. Wang, Analysis of electromagnetic scattering from plasmonic inclusions beyond the quasi-static approximation and applications. ESAIM: M2AN 53 (2019) 1351–1371. [CrossRef] [EDP Sciences] [Google Scholar]
  33. R.C. McPhedran, N.-A.P. Nicorovici, L.C. Botten and G.W. Milton, Cloaking by plasmonic resonance among systems of particles: Cooperation or combat? C. R. Phys. 10 (2009) 391–399. [Google Scholar]
  34. D.A.B. Miller, On perfect cloaking. Opt. Exp. 14 (2006) 12457–12466. [CrossRef] [PubMed] [Google Scholar]
  35. G.W. Milton and N.-A.P. Nicorovici, On the cloaking effects associated with anomalous localized resonance. Proc. R. Soc. A 462 (2006) 3027–3059. [CrossRef] [Google Scholar]
  36. G.W. Milton, N.-A.P. Nicorovici, R.C. McPhedran, K. Cherednichenko and Z. Jacob, Solutions in folded geometries, and associated cloaking due to anomalous resonance. New J. Phys. 10 (2008) 115021. [Google Scholar]
  37. J.C. Nédélec, Acoustic and electromagnetic equations, In Vol. 144 of Applied Mathematical Sciences. Springer-Verlag, New York (2001). [Google Scholar]
  38. N.-A.P. Nicorovici, R.C. McPhedran, S. Enoch and G. Tayeb, Finite wavelength cloaking by plasmonic resonance. New J. Phys. 10 (2008) 115020. [Google Scholar]
  39. N.-A.P. Nicorovici, R.C. McPhedran and G.W. Milton, Optical and dielectric properties of partially resonant composites. Phys. Rev. B 49 (1994) 8479–8482. [Google Scholar]
  40. N.-A.P. Nicorovici, G.W. Milton, R.C. McPhedran and L.C. Botten, Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance. Opt. Exp. 15 (2007) 6314–6323. [CrossRef] [Google Scholar]
  41. G.W. Milton and N.-A.P. Nicorovici, On the cloaking effects associated with anomalous localized resonance. Proc. R. Soc. A 462 (2006) 3027–3059. [CrossRef] [Google Scholar]
  42. J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85 (2000) 3966. [CrossRef] [PubMed] [Google Scholar]
  43. D.R. Smith, J.B. Pendry and M.C.K. Wiltshire, Metamaterials and negative refractive index. Science 305 (2004) 788–792. [Google Scholar]
  44. V.G. Veselago, The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. Usp. 10 (1968) 509–514. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you