Free Access
Volume 54, Number 3, May-June 2020
Page(s) 1025 - 1052
Published online 28 April 2020
  1. R.A. Adams and J.J. Fournier, Sobolev Spaces, vol. 140. Elsevier (2003). [Google Scholar]
  2. N.D. Alikakos, P.W. Bates and X. Chen, Convergence of the Cahn-Hilliard equation to the Hele-Shaw model. Arch. Ration. Mech. Anal. 128 (1994) 165–205. [Google Scholar]
  3. S.M. Allen and J.W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27 (1979) 1085–1095. [CrossRef] [Google Scholar]
  4. A.C. Aristotelous, O. Karakashian and S.M. Wise, A mixed discontinuous Galerkin, convex splitting scheme for a modified Cahn-Hilliard equation and an efficient nonlinear multigrid solver. Discrete Continuous Dyn. Syst.-Ser. B 18 (2013) 2211–22238. [CrossRef] [Google Scholar]
  5. D.N. Arnold, F. Brezzi, B. Cockburn and L.D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2002) 1749–1779. [Google Scholar]
  6. S. Bartels, R. Müller and C. Ortner, Robust a priori and a posteriori error analysis for the approximation of Allen-Cahn and Ginzburg-Landau equations past topological changes. SIAM J. Numer. Anal. 49 (2011) 110–134. [Google Scholar]
  7. S.C. Brenner, Two-level additive Schwarz preconditioners for nonconforming finite element methods. Math. Comput. 65 (1996) 897–921. [Google Scholar]
  8. S.C. Brenner, Convergence of nonconforming multigrid methods without full elliptic regularity. Math. Comput. 68 (1999) 25–53. [Google Scholar]
  9. S.C. Brenner, Forty years of the Crouzeix-Raviart element. Numer. Methods Partial Differ. Equ. 31 (2015) 367–396. [Google Scholar]
  10. S.C. Brenner, L.-Y. Sung, H. Zhang and Y. Zhang, A Morley finite element method for the displacement obstacle problem of clamped Kirchhoff plates. J. Comput. Appl. Math. 254 (2013) 31–42. [Google Scholar]
  11. J.W. Cahn and J.E. Hilliard, Free energy of a nonuniform system I. Interfacial free energy. J. Chem. Phys. 28 (1958) 258–267. [Google Scholar]
  12. X. Chen, Spectrum for the Allen-Chan, Chan-Hillard, and phase-field equations for generic interface. Commun. Partial Differ. Equ. 19 (1994) 1371–1395. [CrossRef] [MathSciNet] [Google Scholar]
  13. Q. Du and R.A. Nicolaides, Numerical analysis of a continuum model of phase transition. SIAM J. Numer. Anal. 28 (1991) 1310–1322. [Google Scholar]
  14. C.M. Elliott and D.A. French, A nonconforming finite-element method for the two-dimensional Cahn-Hilliard equation. SIAM J. Numer. Anal. 26 (1989) 884–903. [Google Scholar]
  15. L.C. Evans, H.M. Soner and P.E. Souganidis, Phase transitions and generalized motion by mean curvature. Commun. Pure Appl. Math. 45 (1992) 1097–1123. [Google Scholar]
  16. X. Feng and Y. Li, Analysis of symmetric interior penalty discontinuous Galerkin methods for the Allen-Cahn equation and the mean curvature flow. IMA J. Numer. Anal. 35 (2014) 1622–1651. [CrossRef] [Google Scholar]
  17. X. Feng and A. Prohl, Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows. Numer. Math. 94 (2003) 33–65. [Google Scholar]
  18. X. Feng and A. Prohl, Error analysis of a mixed finite element method for the Cahn-Hilliard equation. Numer. Math. 99 (2004) 47–84. [Google Scholar]
  19. X. Feng and A. Prohl, Numerical analysis of the Cahn-Hilliard equation and approximation for the Hele-Shaw problem. Interfaces Free Boundaries 7 (2005) 1–28. [CrossRef] [MathSciNet] [Google Scholar]
  20. X. Feng and H.-J. Wu, A posteriori error estimates for finite element approximations of the Cahn-Hilliard equation and the Hele-Shaw flow. J. Comput. Math. 26 (2008) 767–796. [Google Scholar]
  21. X. Feng, Y. Li and A. Prohl, Finite element approximations of the stochastic mean curvature flow of planar curves of graphs. Stochastic Partial Differ. Equ.: Anal. Comput. 2 (2014) 54–83. [Google Scholar]
  22. X. Feng, Y. Li and Y. Xing, Analysis of mixed interior penalty discontinuous Galerkin methods for the Cahn-Hilliard equation and the Hele-Shaw flow. SIAM J. Numer. Anal. 54 (2016) 825–847. [Google Scholar]
  23. X. Feng, Y. Li and Y. Zhang, Finite element methods for the stochastic Allen-Cahn equation with gradient-type multiplicative noise. SIAM J. Numer. Anal. 55 (2017) 194–216. [Google Scholar]
  24. T. Ilmanen, Convergence of the Allen-Cahn equation to Brakke’s motion by mean curvature. J. Differ. Geom. 38 (1993) 417–461. [CrossRef] [Google Scholar]
  25. M. Kovács, S. Larsson and A. Mesforush, Finite element approximation of the Cahn–Hilliard–Cook equation. SIAM J. Numer. Anal. 49 (2011) 2407–2429. [Google Scholar]
  26. Y. Li, Numerical methods for deterministic and stochastic phase field models of phase transition and related geometric flows. Ph.D. thesis, The University of Tennessee (2015). [Google Scholar]
  27. Y. Li, Error analysis of a fully discrete Morley finite element approximation for the Cahn-Hilliard equation. J. Sci. Comput. 78 (2019) 1862–1892. [Google Scholar]
  28. A. Miranville, The Cahn-Hilliard Equation: Recent Advances and Applications. SIAM, 2019. [CrossRef] [Google Scholar]
  29. B.E. Stoth, Convergence of the Cahn-Hilliard equation to the Mullins-Sekerka problem in spherical symmetry. J. Differ. Equ. 125 (1996) 154–183. [Google Scholar]
  30. J. Xu, Y. Li, S. Wu and A. Bousquet, On the stability and accuracy of partially and fully implicit schemes for phase field modeling. Comput. Methods Appl. Mech. Eng. 345 (2019) 826–853. [Google Scholar]
  31. S. Wu and J. Xu, Multiphase Allen-Cahn and Cahn-Hilliard models and their discretizations with the effect of pairwise surface tensions. J. Comput. Phys. 343 (2017) 10–32. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you