Free Access
Volume 54, Number 3, May-June 2020
Page(s) 977 - 1002
Published online 22 April 2020
  1. V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff International Publishing, Leyden (1976). [CrossRef] [Google Scholar]
  2. V. Barbu, Nonlinear Differential Equations of Monotone Types in Banach Spaces. Springer, New York (2010). [CrossRef] [Google Scholar]
  3. H. Brézis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Especes de Hilbert. North-Holland, Amsterdam (1973). [Google Scholar]
  4. M. Brokate and J. Sprekels, Hysteresis and Phase Transitions. Springer, New York (1996). [CrossRef] [Google Scholar]
  5. G. Caginalp, An analysis of a phase-field model of a free boundary. Arch. Ration. Mech. Anal. 92 (1986) 205–245. [Google Scholar]
  6. P. Colli and A. Favini, Time discretization of nonlinear Cauchy problems applying to mixed hyperbolic-parabolic equations. Int. J. Math. Math. Sci. 19 (1996) 481–494. [Google Scholar]
  7. P. Colli and S. Kurima, Time discretization of a nonlinear phase-field system in general domains. Commun. Pure Appl. Anal. 18 (2019) 3161–3179. [CrossRef] [Google Scholar]
  8. P. Colli and S. Kurima, Global existence for a phase separation system deduced from the entropy balance. Nonlinear Anal. 190 (2020) 111613. [CrossRef] [Google Scholar]
  9. C.M. Elliott and S. Zheng, Global existence and stability of solutions to the phase-field equations. In Vol. 95 of Free Boundary Problems. Int. Ser. Numer. Math. Birkhäuser Verlag, Basel (1990) 46–58. [CrossRef] [Google Scholar]
  10. M. Frémond, Non-smooth Thermomechanics. Springer-Verlag, Berlin (2002). [CrossRef] [Google Scholar]
  11. M. Grasselli and V. Pata, Existence of a universal attractor for a parabolic-hyperbolic phase-field system. Adv. Math. Sci. Appl. 13 (2003) 443–459. [Google Scholar]
  12. M. Grasselli and V. Pata, Asymptotic behavior of a parabolic-hyperbolic system. Commun. Pure Appl. Anal. 3 (2004) 849–881. [CrossRef] [Google Scholar]
  13. M. Grasselli, H. Petzeltová and G. Schimperna, Convergence to stationary solutions for a parabolic-hyperbolic phase-field system. Commun. Pure Appl. Anal. 5 (2006) 827–838. [CrossRef] [Google Scholar]
  14. J.W. Jerome, Approximations of nonlinear evolution systems. In: Vol. 164 of Mathematics in Science and Engineering. Academic Press Inc., Orlando (1983). [Google Scholar]
  15. J. Rulla, Error analysis for implicit approximations to solutions to Cauchy problems. SIAM J. Numer. Anal. 33 (1996) 68–87. [Google Scholar]
  16. G. Schimperna, Abstract approach to evolution equations of phase-field type and applications. J. Differ. Equ. 164 (2000) 395–430. [Google Scholar]
  17. R.E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. In: Vol. 49 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (1997). [Google Scholar]
  18. J. Simon, Compact sets in the space Lp(0, T; B). Ann. Mat. Pura Appl. 146 (1987) 65–96. [CrossRef] [MathSciNet] [Google Scholar]
  19. A. Visintin, Models of phase transitions. In: Vol 28 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Boston Inc, Boston, MA (1996). [Google Scholar]
  20. H. Wu, M. Grasselli and S. Zheng, Convergence to equilibrium for a parabolic-hyperbolic phase-field system with Neumann boundary conditions. Math. Models Methods Appl. Sci. 17 (2007) 125–153. [Google Scholar]
  21. H. Wu, M. Grasselli and S. Zheng, Convergence to equilibrium for a parabolic-hyperbolic phase-field system with dynamical boundary condition. J. Math. Anal. Appl. 329 (2007) 948–976. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you