Free Access
Issue
ESAIM: M2AN
Volume 54, Number 4, July-August 2020
Page(s) 1309 - 1337
DOI https://doi.org/10.1051/m2an/2019047
Published online 18 June 2020
  1. A.V. Astaneh, F. Fuentes, J. Mora and L. Demkowicz, High-order polygonal discontinuous Petrov-Galerkin (PolyDPG) methods using ultraweak formulations. Comput. Methods Appl. Mech. Eng. 332 (2018) 686–711. [Google Scholar]
  2. G.R. Barrenechea, E.H. Georgoulis and T. Pryer, Recovered mixed finite element methods. In preparation (2020). [Google Scholar]
  3. L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. Marini and A. Russo, Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23 (2013) 199–214. [Google Scholar]
  4. L. Beirão da Veiga, K. Lipnikov and G. Manzini, The Mimetic Finite Difference Method for Elliptic Problems. In: Vol. 11 of MS&A. Modeling, Simulation and Applications, Springer, Cham (2014). [Google Scholar]
  5. L. Beirão da Veiga, C. Lovadina and A. Russo, Stability analysis for the virtual element method. Math. Models Methods Appl. Sci. 27 (2017) 2557–2594. [Google Scholar]
  6. S.C. Brenner and L.-Y. Sung, # interior penalty methods for fourth order elliptic boundary value problems on polygonal domains. J. Sci. Comput. 22, 23 (2005) 83–118. [Google Scholar]
  7. S.C. Brenner and L.-Y. Sung, Virtual element methods on meshes with small edges or faces. Math. Models Methods Appl. Sci. 28 (2018) 1291–1336. [Google Scholar]
  8. E. Burman, A unified analysis for conforming and nonconforming stabilized finite element methods using interior penalty. SIAM J. Numer. Anal. 43 (2005) 2012–2033. [Google Scholar]
  9. E. Burman and P. Hansbo, Edge stabilization for Galerkin approximations of convection–diffusion–reaction problems. Comput. Methods Appl. Mech. Eng. 193 (2004) 1437–1453. [Google Scholar]
  10. A. Cangiani, E.H. Georgoulis and P. Houston, hp-version discontinuous Galerkin methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. 24 (2014) 2009–2041. [Google Scholar]
  11. A. Cangiani, Z. Dong, E.H. Georgoulis and P. Houston, hp-version discontinuous Galerkin methods for advection-diffusion-reaction problems on polytopic meshes. ESAIM: M2AN 50 (2016) 699–725. [CrossRef] [EDP Sciences] [Google Scholar]
  12. A. Cangiani, Z. Dong, E.H. Georgoulis and P. Houston, hp-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes. Springer (2017). [CrossRef] [Google Scholar]
  13. A. Cangiani, Z. Dong and E.H. Georgoulis, hp-version space-time discontinuous Galerkin methods for parabolic problems on prismatic meshes. SIAM J. Sci. Comput. 39 (2017) A1251–A1279. [Google Scholar]
  14. A. Cangiani, G. Manzini and O.J. Sutton, Conforming and nonconforming virtual element methods for elliptic problems. IMA J. Numer. Anal. 37 (2017) 1317–1354. [Google Scholar]
  15. P.G. Ciarlet, The Finite Element Method for Elliptic Problems. In: Vol. 40 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2002). [Google Scholar]
  16. P. Clément, Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9 (1975) 77–84. [Google Scholar]
  17. B. Cockburn, Continuous dependence and error estimation for viscosity methods. Acta Numer. 12 (2003) 127–180. [CrossRef] [MathSciNet] [Google Scholar]
  18. B. Cockburn, J. Gopalakrishnan and R. Lazarov, Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47 (2009) 1319–1365. [Google Scholar]
  19. B. Cockburn, D. Di Pietro and A. Ern, Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods. ESAIM: M2AN 50 (2016) 635–650. [CrossRef] [EDP Sciences] [Google Scholar]
  20. D. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods. In: Vol. 69 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer, Heidelberg (2012). [Google Scholar]
  21. D.A. Di Pietro and A. Ern, A hybrid high-order locking-free method for linear elasticity on general meshes. Comput. Methods Appl. Mech. Eng. 283 (2015) 1–21. [Google Scholar]
  22. J. Douglas Jr and T. Dupont, Interior penalty procedures for elliptic and parabolic Galerkin methods. In: Vol. 58 of Lecture Notes in Physics (1976) 207–216. [CrossRef] [Google Scholar]
  23. E.H. Georgoulis and A. Lasis, A note on the design of #-version interior penalty discontinuous Galerkin finite element methods for degenerate problems. IMA J. Numer. Anal. 26 (2006) 381–390. [CrossRef] [MathSciNet] [Google Scholar]
  24. E.H. Georgoulis and T. Pryer, Recovered finite element methods. Comput. Methods Appl. Mech. Eng. 332 (2018) 303–324. [Google Scholar]
  25. E.H. Georgoulis, P. Houston and J. Virtanen, An a posteriori error indicator for discontinuous Galerkin approximations of fourth-order elliptic problems. IMA J. Numer. Anal. 31 (2011) 281–298. [CrossRef] [MathSciNet] [Google Scholar]
  26. E. Georgoulis, C. Makridakis, T. Pryer, Babuška-Osborn techniques in discontinuous Galerkin methods: L2-norm error estimates for unstructured meshes. Preprint arXiv:1704.05238 (2017). [Google Scholar]
  27. J. Giesselmann, C. Makridakis and T. Pryer, A posteriori analysis of discontinuous Galerkin schemes for systems of hyperbolic conservation laws. SIAM J. Numer. Anal. 53 (2015) 1280–1303. [Google Scholar]
  28. W. Hackbusch and S. Sauter, Composite finite elements for the approximation of PDEs on domains with complicated micro-structures. Numer. Math. 75 (1997) 447–472. [Google Scholar]
  29. P. Houston and E. Süli, Stabilised hp-finite element approximation of partial differential equations with nonnegative characteristic form. Computing 66 (2001) 99–119. [CrossRef] [MathSciNet] [Google Scholar]
  30. P. Houston, C. Schwab and E. Süli, Stabilized #-finite element methods for first-order hyperbolic problems. SIAM J. Numer. Anal. 37 (2000) 1618–1643. [Google Scholar]
  31. P. Houston, C. Schwab and E. Süli, Discontinuous #-finite element methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 39 (2002) 2133–2163. [Google Scholar]
  32. O.A. Karakashian and F. Pascal, Convergence of adaptive discontinuous Galerkin approximations of second-order elliptic problems. SIAM J. Numer. Anal. 45 (2007) 641–665. [Google Scholar]
  33. L. Mu, J. Wang and X. Ye, Weak Galerkin finite element methods for the biharmonic equation on polytopal meshes. Numer. Methods Part. Differ. Equ. 30 (2014) 1003–1029. [CrossRef] [Google Scholar]
  34. J. Nitsche, über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Collection of articles dedicated to Lothar Collatz on his sixtieth birthday. Abh. Math. Sem. Univ. Hamburg 36 (1971) 9–15. [CrossRef] [MathSciNet] [Google Scholar]
  35. O. Oleinik and E. Radkevič, Second Order Equations with Nonnegative Characteristic Form. American Mathematical Society, 1973. [CrossRef] [Google Scholar]
  36. P. Oswald, On a BPX-preconditioner for # elements. Computing 51 (1993) 125–133. [CrossRef] [MathSciNet] [Google Scholar]
  37. D. Peterseim and S.A. Sauter, The composite mini element-coarse mesh computation of Stokes flows on complicated domains. SIAM J. Numer. Anal. 46 (2008) 3181–3206. [Google Scholar]
  38. W. Reed and T. Hill, Triangular mesh methods for the neutron transport equation. Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory (1973). [Google Scholar]
  39. S. Rjasanow, S. Weißer, Higher order BEM-based FEM on polygonal meshes. SIAM J. Numer. Anal. 50 (2012) 2357–2378. [Google Scholar]
  40. L.R. Scott, S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54 (1990) 483–493. [Google Scholar]
  41. N. Sukumar and A. Tabarraei, Conforming polygonal finite elements. Int. J. Numer. Methods Eng. 61 (2004) 2045–2066. [Google Scholar]
  42. C. Talischi, G. Paulino, A. Pereira and I. Menezes, PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab. Struct. Multidisc. Optim. 45 (2012) 309–328. [CrossRef] [Google Scholar]
  43. A. Veeser and P. Zanotti, Quasi-optimal nonconforming methods for symmetric elliptic problems. III – discontinuous Galerkin and other interior penalty methods. SIAM J. Numer. Anal. 56 (2018) 2871–2894. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you