Free Access
Issue
ESAIM: M2AN
Volume 54, Number 4, July-August 2020
Page(s) 1139 - 1180
DOI https://doi.org/10.1051/m2an/2019083
Published online 18 May 2020
  1. R.A. Adams and J. Fournier, Cone conditions and properties of Sobolev spaces. J. Math. Anal. Appl. 61 (1977) 713–734. [Google Scholar]
  2. A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2 (2009) 183–202. [Google Scholar]
  3. V.I. Bogachev, Measure Theory, Vol. I, II, Springer-Verlag, Berlin, II (2007). [CrossRef] [Google Scholar]
  4. E. Casas, Pontryagin’s principle for state-constrained boundary control problems of semilinear parabolic equations. SIAM J. Control Optim. 35 (1997) 1297–1327. [Google Scholar]
  5. E. Casas and E. Zuazua, Spike controls for elliptic and parabolic PDEs. Syst. Control Lett. 62 (2013) 311–318. [Google Scholar]
  6. E. Casas, C. Clason and K. Kunisch, Approximation of elliptic control problems in measure spaces with sparse solutions. SIAM J. Control Optim. 50 (2012) 1735–1752. [Google Scholar]
  7. E. Casas, B. Vexler and E. Zuazua, Sparse initial data identification for parabolic PDE and its finite element approximations. Math. Control Relat. Fields 5 (2015) 377–399. [CrossRef] [Google Scholar]
  8. C. Clason and K. Kunisch, A duality-based approach to elliptic control problems in non-reflexive Banach spaces. ESAIM: COCV 17 (2011) 243–266. [CrossRef] [EDP Sciences] [Google Scholar]
  9. V. Duval and G. Peyré, Exact support recovery for sparse spikes deconvolution. Found. Comput. Math. 15 (2015) 1315–1355. [CrossRef] [Google Scholar]
  10. K. Eriksson, C. Johnson and V. Thomée, Time discretization of parabolic problems by the discontinuous Galerkin method. ESAIM: M2AN 19 (1985) 611–643. [CrossRef] [EDP Sciences] [Google Scholar]
  11. K. Eriksson, C. Johnson and S. Larsson, Adaptive finite element methods for parabolic problems. VI. Analytic semigroups. SIAM J. Numer. Anal. 35 (1998) 1315–1325. [Google Scholar]
  12. L.C. Evans, Partial differential equations. In: Vol. 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2010). [CrossRef] [Google Scholar]
  13. C. Fabre, J.-P. Puel and E. Zuazua, On the density of the range of the semigroup for semilinear heat equations. In: Vol. 70 of Control and Optimal Design of Distributed Parameter Systems (Minneapolis, MN, 1992). IMA Vol. Math. Appl. Springer, New York (1995) 73–91. [CrossRef] [Google Scholar]
  14. J.A. Griepentrog, Maximal regularity for nonsmooth parabolic problems in Sobolev-Morrey spaces. Adv. Differ. Equ. 12 (2007) 1031–1078. [Google Scholar]
  15. A. Hansbo, Strong stability and non-smooth data error estimates for discretizations of linear parabolic problems. BIT 42 (2002) 351–379. [CrossRef] [Google Scholar]
  16. V. Isakov, Inverse problems for partial differential equations, 3rd edition. In: Vol. 127 of Applied Mathematical Sciences . Springer, Cham (2017). [CrossRef] [Google Scholar]
  17. L.V. Kantorovic and G.V.S. Rubinstein, On a space of completely additive functions. Vestnik Leningrad. Univ. 13 (1958) 52–59. [Google Scholar]
  18. J. Kovats, Real analytic solutions of parabolic equations with time-measurable coefficients. Proc. Amer. Math. Soc. 130 (2002) 1055–1064. [CrossRef] [Google Scholar]
  19. K. Kunisch, K. Pieper and B. Vexler, Measure valued directional sparsity for parabolic optimal control problems. SIAM J. Control Optim. 52 (2014) 3078–3108. [Google Scholar]
  20. R. Leis, Initial-boundary value problems in mathematical physics. In: Vol. 42 of Modern mathematical methods in diffraction theory and its applications in engineering (Freudenstadt, 1996). Methoden Verfahren Math. Phys. Peter Lang, Frankfurt am Main (1997) 125–144. [Google Scholar]
  21. D. Leykekhman and B. Vexler, Pointwise best approximation results for Galerkin finite element solutions of parabolic problems. SIAM J. Numer. Anal. 54 (2016) 1365–1384. [Google Scholar]
  22. D. Leykekhman and B. Vexler, Discrete maximal parabolic regularity for Galerkin finite element methods. Numer. Math. 135 (2017) 923–952. [Google Scholar]
  23. D. Meidner, R. Rannacher and B. Vexler, A priori error estimates for finite element discretizations of parabolic optimization problems with pointwise state constraints in time. SIAM J. Control Optim. 49 (2011) 1961–1997. [Google Scholar]
  24. P. Merino, I. Neitzel and F. Tröltzsch, On linear-quadratic elliptic control problems of semi-infinite type. Appl. Anal. 90 (2011) 1047–1074. [Google Scholar]
  25. A. Milzarek and M. Ulbrich, A semismooth Newton method with multidimensional filter globalization for l1-optimization. SIAM J. Optim. 24 (2014) 298–333. [Google Scholar]
  26. C. Palencia, On the stability of variable stepsize rational approximations of holomorphic semigroups. Math. Comput. 62 (1994) 93–103. [Google Scholar]
  27. K. Pieper and B. Vexler, A priori error analysis for discretization of sparse elliptic optimal control problems in measure space. SIAM J. Control Optim. 51 (2013) 2788–2808. [Google Scholar]
  28. R. Rannacher and B. Vexler, A priori error estimates for the finite element discretization of elliptic parameter identification problems with pointwise measurements. SIAM J. Control Optim. 44 (2005) 1844–1863. [Google Scholar]
  29. A.H. Schatz and L.B. Wahlbin, Interior maximum norm estimates for finite element methods. Math. Comput. 31 (1977) 414–442. [Google Scholar]
  30. A.H. Schatz and L.B. Wahlbin, Interior maximum-norm estimates for finite element methods. II Math. Comput. 64 (1995) 907–928. [Google Scholar]
  31. A. Shapiro, Second-order derivatives of extremal-value functions and optimality conditions for semi-infinite programs. Math. Oper. Res. 10 (1985) 207–219. [CrossRef] [Google Scholar]
  32. V. Thomée, J. Xu and N.Y. Zhang, Superconvergence of the gradient in piecewise linear finite-element approximation to a parabolic problem. SIAM J. Numer. Anal. 26 (1989) 553–573. [Google Scholar]
  33. D. Walter, On sparse sensor placement for parameter identification problems with partial dierential equations. Ph.D. thesis, Technische Universität München (2019). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you