Free Access
Volume 54, Number 4, July-August 2020
Page(s) 1181 - 1220
Published online 18 May 2020
  1. J.H. Adler, T.J. Atherton, T.R. Benson, D.B. Emerson and S.P. MacLachlan, Energy minimization for liquid crystal equilibrium with electric and flexoelectric effects. SIAM J. Sci. Comput. 37 (2015) S157–S176. [Google Scholar]
  2. J.H. Adler, T.J. Atherton, D.B. Emerson and S.P. MacLachlan, An energy-minimization finite-element approach for the Frank-Oseen model of nematic liquid crystals. SIAM J. Numer. Anal. 53 (2015) 2226–2254. [Google Scholar]
  3. J.H. Adler, D.B. Emerson, S.P. MacLachlan and T.A. Manteuffel, Constrained optimization for liquid crystal equilibria. SIAM J. Sci. Comput. 38 (2016) B50–B76. [Google Scholar]
  4. F. Alouges, A new algorithm for computing liquid crystal stable configurations: the harmonic mapping case. SIAM J. Numer. Anal. 34 (1997) 1708–1726. [Google Scholar]
  5. L. Ambrosio, Existence of minimal energy configurations of nematic liquid crystals with variable degree of orientation. Manuscripta Math. 68 (1990) 215–228. [CrossRef] [Google Scholar]
  6. L. Ambrosio, Regularity of solutions of a degenerate elliptic variational problem. Manuscripta Math. 68 (1990) 309–326. [CrossRef] [Google Scholar]
  7. T. Araki and H. Tanaka, Colloidal aggregation in a nematic liquid crystal: topological arrest of particles by a single-stroke disclination line. Phys. Rev. Lett. 97 (2006) 127801. [CrossRef] [PubMed] [Google Scholar]
  8. J. Arsuaga, R.K.-Z. Tan, M. Vazquez, D.W. Sumners and S.C. Harvey, Investigation of viral dna packaging using molecular mechanics models. Biophys. Chem. 101–102 (2002) 475–484. Special issue in honour of John A Schellman. [CrossRef] [PubMed] [Google Scholar]
  9. S. Badia, F.M. Guillén-González and J.V. Gutiérrez-Santacreu, An overview on numerical analyses of nematic liquid crystal flows. Arch. Comput. Methods Eng. 18 (2011) 285–313. [Google Scholar]
  10. J.M. Ball, Mathematics and liquid crystals. Mol. Cryst. Liq. Cryst. 647 (2017) 1–27. [CrossRef] [Google Scholar]
  11. J.M. Ball and A. Zarnescu, Orientable and non-orientable director fields for liquid crystals. Proc. Appl. Math. Mech. 7 (2007) 1050701–1050704. [Google Scholar]
  12. J.M. Ball and A. Zarnescu, Orientability and energy minimization in liquid crystal models. Arch. Ration. Mech. Anal. 202 (2011) 493–535. [Google Scholar]
  13. G. Barbero and G. Durand, On the validity of the rapini-papoular surface anchoring energy form in nematic liquid crystals. J. Phys. Fr. 47 (1986) 2129–2134. [CrossRef] [Google Scholar]
  14. J.W. Barrett, X. Feng and A. Prohl, Convergence of a fully discrete finite element method for a degenerate parabolic system modelling nematic liquid crystals with variable degree of orientation. ESAIM: M2AN 40 (2006) 175–199. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  15. S. Bartels, Numerical analysis of a finite element scheme for the approximation of harmonic maps into surfaces. Math. Comput. 79 (2010) 1263–1301. [Google Scholar]
  16. P. Bauman, M.C. Calderer, C. Liu and D. Phillips, The phase transition between chiral nematic and smectic a* liquid crystals. Arch. Ration. Mech. Anal. 165 (2002) 161–186. [Google Scholar]
  17. D.W. Berreman and S. Meiboom, Tensor representation of Oseen-Frank strain energy in uniaxial cholesterics. Phys. Rev. A 30 (1984) 1955–1959. [Google Scholar]
  18. F. Bethuel, H. Brezis and F. Hélein, Ginzburg-Landau vortices. In: Vol. 13 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Boston Inc., Boston, MA (1994). [Google Scholar]
  19. P. Biscari and P. Cesana, Ordering effects in electric splay freedericksz transitions. Continuum Mech. Thermodyn. 19 (2007) 285–298. [CrossRef] [Google Scholar]
  20. L. Blinov, Electro-optical and Magneto-optical Properties of Liquid Crystals. Wiley (1983). [Google Scholar]
  21. A. Braides, Gamma-convergence for beginners. In: Vol. 22 of Oxford Lecture Series in Mathematics and Its Applications. Oxford Scholarship (2002). [Google Scholar]
  22. S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods, 3rd edition. In: Vol. 15 of Texts in Applied Mathematics. Springer, New York, NY (2008). [CrossRef] [Google Scholar]
  23. H. Brezis, J.-M. Coron and E.H. Lieb, Harmonic maps with defects. Commun. Math. Phys. 107 (1986) 649–705. [CrossRef] [MathSciNet] [Google Scholar]
  24. Á. Buka and N. Éber, editors, Flexoelectricity in Liquid Crystals: Theory, Experiments and Applications. World Scientific (2012). [CrossRef] [Google Scholar]
  25. M. Calderer, D. Golovaty, F. Lin and C. Liu, Time evolution of nematic liquid crystals with variable degree of orientation. SIAM J. Math. Anal. 33 (2002) 1033–1047. [CrossRef] [MathSciNet] [Google Scholar]
  26. P.G. Ciarlet, The finite element method for elliptic problems, 2nd edition. In: Classics in Applied Mathematics. SIAM, Philadelphia, PA (2002). [Google Scholar]
  27. P.G. Ciarlet, Linear and Nonlinear Functional Analysis with Applications, 1st edition.. SIAM (2013). [Google Scholar]
  28. R. Cohen, S.-Y. Lin and M. Luskin, Relaxation and gradient methods for molecular orientation in liquid crystals. Comput. Phys. Commun. 53 (1989) 455–465. [Google Scholar]
  29. S. Čopar, U. Tkalec, I. Muševič and S. Žumer, Knot theory realizations in nematic colloids. Proc. Natl. Acad. Sci. 112 (2015) 1675–1680. [CrossRef] [Google Scholar]
  30. P.A. Cruz, M.F. Tomé, I.W. Stewart and S. McKee, Numerical solution of the Ericksen-Leslie dynamic equations for two-dimensional nematic liquid crystal flows. J. Comput. Phys. 247 (2013) 109–136. [Google Scholar]
  31. G. Dal Maso, An introduction to Γ-convergence. In: Vol. 8 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Boston Inc, Boston, MA (1993). [Google Scholar]
  32. P.G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd edition. In: Vol. 83 of International Series of Monographs on Physics Oxford Science Publication, Oxford, UK (1995). [Google Scholar]
  33. A.E. Diegel and S.W. Walker, A finite element method for a phase field model of nematic liquid crystal droplets. Commun. Comput. Phys. 25 (2019) 155–188. [Google Scholar]
  34. J. Ericksen, Liquid crystals with variable degree of orientation. Arch. Ration. Mech. Anal. 113 (1991) 97–120. [Google Scholar]
  35. L.C. Evans, Partial Differential Equations. American Mathematical Society, Providence, Rhode Island (1998). [Google Scholar]
  36. R.P. Feynman, R.B. Leighton and M. Sands, The Feynman Lectures on Physics. Addison-Wesley Publishing Company (1964). [Google Scholar]
  37. F.C. Frank, I. Liquid crystals. On the theory of liquid crystals. Discuss. Faraday Soc. 25 (1958) 19–28. [Google Scholar]
  38. E.C. Gartland Jr., Liquid Crystal Director Models with Coupled Electric Fields. Seminar given at the Newton Institute, Spring (2013). [Google Scholar]
  39. E.C. Gartland Jr., Scalings and limits of landau-de gennes models for liquid crystals: a comment on some recent analytical papers. Math. Model. Anal. 23 (2018) 414–432. [CrossRef] [Google Scholar]
  40. E.C. Gartland Jr. and A. Ramage, A renormalized newton method for liquid crystal director modeling. SIAM J. Numer. Anal. 53 (2015) 251–278. [Google Scholar]
  41. D. Golovaty, L. Gross, S. Hariharan and E.C. Gartland Jr., On instability of a bend fréedericksz configuration in nematic liquid crystals. J. Math. Anal. Appl. 255 (2001) 391–403. [Google Scholar]
  42. J.W. Goodby, Introduction to defect textures in liquid crystals. In: Handbook of Visual Display Technology. Edited by J. Chen, W. Cranton and M. Fihn. Springer (2012) 1290–1314. [Google Scholar]
  43. Y. Gu and N.L. Abbott, Observation of saturn-ring defects around solid microspheres in nematic liquid crystals. Phys. Rev. Lett. 85 (2000) 4719–4722. [CrossRef] [PubMed] [Google Scholar]
  44. I.U. Haq, W.N. Chaudhry, M.N. Akhtar, S. Andleeb and I. Qadri, Bacteriophages and their implications on future biotechnology: a review. Virol. J. 9 (2012) 9. [CrossRef] [PubMed] [Google Scholar]
  45. R. Hardt, D. Kinderlehrer and F.-H. Lin, Stable defects of minimizers of constrained variational principles. Ann. Inst. Henri Poincare (C) Anal. Non linéaire 5 (1988) 297–322. [CrossRef] [Google Scholar]
  46. R. Hardt, D. Kinderlehrer and M. Luskin, Remarks about the mathematical theory of liquid crystals. In: Calculus of Variations and Partial Differential Equations. Edited by S. Hildebrandt, D. Kinderlehrer and M. Miranda. Vol. 1340 of Lecture Notes in Mathematics. Springer, Berlin Heidelberg (1988) 123–138. [Google Scholar]
  47. J. Hoogboom, J.A. Elemans, A.E. Rowan, T.H. Rasing and R.J. Nolte, The development of self-assembled liquid crystal display alignment layers. Philos. Trans. R. Soc. London A: Math. Phys. Eng. Sci. 365 (2007) 1553–1576. [CrossRef] [Google Scholar]
  48. A. Kilian and S. Hess, Derivation and application of an algorithm for the numerical calculation of the local orientation of nematic liquid crystals. Z. Naturforsch. A 44 (1989) 693–703. [CrossRef] [Google Scholar]
  49. D. Kinderlehrer, N. Walkington and B. Ou, The elementary defects of the Oseen-Frank energy for a liquid crystalResearch report (Carnegie Mellon University. Department of Mathematics. Center for Nonlinear Analysis), Carnegie Mellon University, Department of Mathematics [Center for Nonlinear Analysis] (1993). [Google Scholar]
  50. W.S. Klug, M.T. Feldmann and M. Ortiz, Three-dimensional director-field predictions of viral DNA packing arrangements. Comput. Mech. 35 (2005) 146–152. [Google Scholar]
  51. S. Korotov, M. Křížek and P. Neittaanmäkia, Weakened acute type condition for tetrahedral triangulations and the discrete maximum principle. Math. Comput. 70 (2001) 107–119. [Google Scholar]
  52. M. Křížek, J. Šolc, Acute versus nonobtuse tetrahedralizations, In: Conjugate Gradient Algorithms and Finite Element Methods. Edited by M. Křížek, P. Neittaanmäki, S. Korotov, R. Glowinski. Scientific Computation. Springer, Berlin Heidelberg (2004) 161–170. [Google Scholar]
  53. J.P. Lagerwall and G. Scalia, A new era for liquid crystal research: applications of liquid crystals in soft matter nano-, bio- and microtechnology. Curr. Appl. Phys. 12 (2012) 1387–1412. [Google Scholar]
  54. L.D. Landau, E.M. Lifshitz, Electrodynamics of continuous media. In: Vol. 8 of Course of Theoretical Physics. Addison-Wesley (1960). [Google Scholar]
  55. F.-H. Lin, Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena. Commun. Pure Appl. Math. 42 (1989) 789–814. [Google Scholar]
  56. F.H. Lin, On nematic liquid crystals with variable degree of orientation. Commun. Pure Appl. Math. 44 (1991) 453–468. [Google Scholar]
  57. S.-Y. Lin and M. Luskin, Relaxation methods for liquid crystal problems. SIAM J. Numer. Anal. 26 (1989) 1310–1324. [Google Scholar]
  58. T. Liu, U. Sae-Ueng, D. Li, G.C. Lander, X. Zuo, B. Jönsson, D. Rau, I. Shefer and A. Evilevitch, Solid-to-fluid-like dna transition in viruses facilitates infection. Proc. Natl. Acad. Sci. 111 (2014) 14675–14680. [CrossRef] [Google Scholar]
  59. A. Majumdar, Equilibrium order parameters of nematic liquid crystals in the landau-de gennes theory. Eur. J. Appl. Math. 21 (2010) 181–203. [Google Scholar]
  60. D. Marenduzzo, E. Orlandini, A. Stasiak, D.W. Sumners, L. Tubiana and C. Micheletti, DNA–DNA interactions in bacteriophage capsids are responsible for the observed DNA knotting. Proc. Natl. Acad. Sci. 106 (2009) 22269–22274. [CrossRef] [Google Scholar]
  61. H. Mori, E.C. Gartland Jr., J.R. Kelly and P.J. Bos, Multidimensional director modeling using the Q tensor representation in a liquid crystal cell and its application to the pi-cell with patterned electrodes. Jpn. J. Appl. Phys. 38 (1999) 135. [Google Scholar]
  62. S.M. Morris, M.J. Clarke, A.E. Blatch and H.J. Coles, Structure-flexoelastic properties of bimesogenic liquid crystals. Phys. Rev. E 75 (2007) 041701. [Google Scholar]
  63. A. Morvant, E. Seal and S.W. Walker, A coupled ericksen/Allen–Cahn model for liquid crystal droplets. Comput. Math. Appl. 75 (2018) 4048–4065. [Google Scholar]
  64. N.J. Mottram and C.J.P. Newton, Introduction to Q-tensor theory. Preprint arXiv:1409.3542 (2014). [Google Scholar]
  65. A. Napov and Y. Notay, Algebraic analysis of aggregation-based multigrid. Numer. Linear Algebra Appl. 18 (2011) 539–564. [Google Scholar]
  66. A. Napov and Y. Notay, An algebraic multigrid method with guaranteed convergence rate. SIAM J. Sci. Comput. 34 (2012) A1079–A1109. [Google Scholar]
  67. E.D. Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional sobolev spaces. Bull. Sci. Math 136 (2012) 521–573. [CrossRef] [MathSciNet] [Google Scholar]
  68. J. Nocedal and S.J. Wright, Numerical Optimization, 2nd edition. Springer Series in Operations Research. Springer (2006). [Google Scholar]
  69. R.H. Nochetto, S.W. Walker and W. Zhang, Numerics for liquid crystals with variable degree of orientation. In: Vol. 1753 of Symposium NN – Mathematical and Computational Aspects of Materials Science. MRS Proceedings (2015). [Google Scholar]
  70. R.H. Nochetto, S.W. Walker and W. Zhang, A finite element method for nematic liquid crystals with variable degree of orientation. SIAM J. Numer. Anal. 55 (2017) 1357–1386. [Google Scholar]
  71. R.H. Nochetto, S.W. Walker and W. Zhang, The ericksen model of liquid crystals with colloidal and electric effects. J. Comput. Phys. 352 (2018) 568–601. [Google Scholar]
  72. Y. Notay, An aggregation-based algebraic multigrid method. Electron. Trans. Numer. Anal. 37 (2010) 123–146. [Google Scholar]
  73. Y. Notay, Aggregation-based algebraic multigrid for convection-diffusion equations. SIAM J. Sci. Comput. 34 (2012) A2288–A2316. [Google Scholar]
  74. M. Paicu and A. Zarnescu, Energy dissipation and regularity for a coupled Navier-Stokes and Q-tensor system. Arch. Ration. Mech. Anal. 203 (2012) 45–67. [Google Scholar]
  75. R. Perkins, Liquid crystal. (2009). [Google Scholar]
  76. E.B. Priestley, P.J. Wojtowicz and P. Sheng, Introduction to Liquid Crystals. Plenum Press, New York (1975). [Google Scholar]
  77. A. Ramage and E.C. Gartland Jr., A preconditioned nullspace method for liquid crystal director modeling. SIAM J. Sci. Comput. 35 (2013) B226–B247. [Google Scholar]
  78. T. Roques-Carmes, R.A. Hayes, B.J. Feenstra and L.J.M. Schlangen, Liquid behavior inside a reflective display pixel based on electrowetting. J. Appl. Phys. 95 (2004) 4389–4396. [Google Scholar]
  79. U. Sae-Ueng, D. Li, X. Zuo, J.B. Huffman, F.L. Homa, D. Rau and A. Evilevitch, Solid-to-fluid DNA transition inside HSV-1 capsid close to the temperature of infection. Nat. Chem. Biol. 10 (2014) 861–867. [Google Scholar]
  80. R. Schoen and K. Uhlenbeck, A regularity theory for harmonic maps. J. Differ. Geom. 17 (1982) 307–335. [CrossRef] [Google Scholar]
  81. B. Senyuk, Liquid crystals: a simple view on a complex matter. (2010). [Google Scholar]
  82. J. Shen and X. Yang, Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Dis. Cont. Dyn. Syst. 28 (2010) 1669–1691. [CrossRef] [MathSciNet] [Google Scholar]
  83. J. Shen and X. Yang, A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscosities. SIAM J. Sci. Comput. 32 (2010) 1159–1179. [Google Scholar]
  84. A.M. Sonnet and E. Virga, Dissipative Ordered Fluids: Theories for Liquid Crystals. Springer (2012). [CrossRef] [Google Scholar]
  85. K. Tojo, A. Furukawa, T. Araki and A. Onuki, Defect structures in nematic liquid crystals around charged particles. Eur. Phys. J. E 30 (2009) 55–64. [CrossRef] [EDP Sciences] [Google Scholar]
  86. E. VanderZee, A.N. Hirani, V. Zharnitsky and D. Guoy, A dihedral acute triangulation of the cube. Comput. Geom. 43 (2010) 445–452. [Google Scholar]
  87. E.G. Virga, Variational Theories for Liquid Crystals, 1st edition. Chapman and Hall, London 43 (1994). [CrossRef] [Google Scholar]
  88. S.W. Walker, FELICITY: a Matlab/C++ toolbox for developing finite element methods and simulation modeling. SIAM J. Sci. Comput. 40 (2018) C234–C257. [Google Scholar]
  89. S.W. Walker, On the Correct Thermo-dynamic Potential for Electro-static Dielectric Energy. Preprint arXiv:1803.08136 (2018). [Google Scholar]
  90. R.L. Wheeden and A. Zygmund, Measure and Integral: An Introduction to Real Analysis, 2nd edition, CRC Press (2015). [Google Scholar]
  91. S.M. Wise, C. Wang and J.S. Lowengrub, An energy-stable and convergent finite-difference scheme for the phase field crystal equation. SIAM J. Numer. Anal. 47 (2009) 2269–2288. [Google Scholar]
  92. C. Zhang, X. Zhang, A. Acharya, D. Golovaty and N. Walkington, A non-traditional view on the modeling of nematic disclination dynamics. Q. Appl. Math. 75 (2017) 309–357. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you