Free Access
Volume 54, Number 4, July-August 2020
Page(s) 1073 - 1109
Published online 18 May 2020
  1. M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables. Dover Books on Mathematics. Dover Publications (1965). [Google Scholar]
  2. S. Balac and G. Caloz, Mathematical modeling and numerical simulation of magnetic susceptibility artifacts in Magnetic Resonance Imaging. Comput. Methods Biomech. Biomed. Eng. 3 (2000) 335–349. [CrossRef] [Google Scholar]
  3. J.L. Boxerman, L.M. Hamberg, B.R. Rosen and R.M. Weisskoff, MR contrast due to intravascular magnetic susceptibility perturbations. Magn. Reson. Med. 34 (1995) 555–566. [Google Scholar]
  4. H. Cheng, On the method of images for systems of closely spaced conducting spheres. SIAM J. Appl. Math. 61 (2001) 1324–1337. [Google Scholar]
  5. J.-Y. Chung, Y.-W. Sung and S. Ogawa, Evaluation of the contribution of signals originating from large blood vessels to signals of functionally specific brain areas. BioMed Res. Int. 2015 (2015) 234345. [Google Scholar]
  6. R. Dautray and J.L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques. Vol. 4 of Collection Enseignement – INSTN CEA (1988). [Google Scholar]
  7. J. Deny and J.L. Lions, Les espaces du type de Beppo Levi. Ann. Inst. Fourier 5 (1954) 305–370. [CrossRef] [Google Scholar]
  8. O. Druet, Inégalités de Sobolev optimales et inégalités isopérimétriques sur les variétés. Séminaire de théorie spectrale et géométri 20 (2001–2002) 23–100. [Google Scholar]
  9. S. Fujiwara, L. Uhrig, A. Amadon, B. Jarraya and D. Le Bihan, Quantification of iron in the non-human primate brain with diffusion-weighted magnetic resonance imaging. NeuroImage 102 (2014) 789–797. [CrossRef] [PubMed] [Google Scholar]
  10. Z. Gan, S. Jiang, E. Luijten and Z. Xu, A hybrid method for systems of closely spaced dielectric spheres and ions. SIAM J. Sci. Comput. 38 (2016) B375–B395. [Google Scholar]
  11. F. Hecht, New development in FreeFem++. J. Numer. Math. 20 (2012) 251–265. [CrossRef] [MathSciNet] [Google Scholar]
  12. J. Jin, The Finite Element Method in Electromagnetics. 3rd edition. Wiley-IEEE Press (2014). [Google Scholar]
  13. S.-G. Kim, N. Harel, T. Jin, T. Kim, P. Lee and F. Zhao, Cerebral blood volume MRI with intravascular superparamagentic iron oxide nanoparticles. NMR in Biomed. 26 (2013) 949–962. [CrossRef] [Google Scholar]
  14. V.G. Kiselev, Effect of magnetic field gradients induced by microvasculature on NMR measurements of molecular self-diffusion in biological tissues. J. Magn. Reson. 170 (2004) 228–235. [Google Scholar]
  15. V. Kiselev and S. Posse, Analytical model of susceptibility-induced MR signal dephasing: Effect of diffusion in a microvascular network. Magn. Reson. Med. 41 (1999) 499–509. [Google Scholar]
  16. S. Kunis and D. Potts, Fast spherical Fourier algorithms. J. Comput. Appl. Math. 161 (2003) 75–98. [Google Scholar]
  17. K.S. Kunz and R.J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics. CRC Press (1993). [Google Scholar]
  18. E.B. Lindgren, A.J. Stace, E. Polack, Y. Maday, B. Stamm and E. Besley, An integral equation approach to calculate electrostatic interactions in many-body dielectric systems. J. Comput. Phys. 371 (2018) 712–731. [Google Scholar]
  19. G. Lohöfer, Inequalities for the associated Legendre functions. J. Approximation Theory 95 (1998) 178–193. [CrossRef] [Google Scholar]
  20. F.W.J. Olver, D.W. Lozier, R.F. Boisvert and C.W. Clark, NIST Handbook of Mathematical Functions. Cambridge University Press (2010). [Google Scholar]
  21. A.P. Pathak, B.D. Ward and K.M. Schmainda, A novel technique for modeling susceptibility-based contrast mechanisms for arbitrary microvascular geometries: The finite perturber method. NeuroImage 40 (2008) 1130–1143. [CrossRef] [PubMed] [Google Scholar]
  22. J. Qin, J.J. de Pablo and K.F. Freed, Image method for induced surface charge from many-body system of dielectric spheres. J. Chem. Phys. 145 (2016) 124903. [Google Scholar]
  23. W.J. Rogers, C.H. Meyer and C.M. Kramer, Technology insight: in vivo cell tracking by use of MRI. Nat. Clin. Pract. Cardiovasc. Med. 3 (2006) 554–562. [CrossRef] [PubMed] [Google Scholar]
  24. V. Rokhlin and M. Tygert, Fast algorithms for spherical harmonic expansions. SIAM J. Sci. Comput. 27 (2006) 1903–1928. [Google Scholar]
  25. G. Sansone, Orthogonal functions. Dover Books on Mathematics Series. Dover Publications (2004). [Google Scholar]
  26. N. Schaeffer, Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations. Geochem. Geophys. Geosyst. 14 (2013) 751–758. [Google Scholar]
  27. J.F. Schenck, The role of magnetic susceptibility in Magnetic Resonance Imaging: MRI magnetic compatibility of the first and second kinds. Med. Phys. 23 (1996) 815–850. [CrossRef] [PubMed] [Google Scholar]
  28. J.L. Volakis and S. Sertel, Integral equation methods for electromagnetics. In: Electromagnetic Waves. Institution of Engineering and Technology (2012). [Google Scholar]
  29. C. Weis, F. Blank, A. West, G. Black, R.C. Woodward, M.R. Carroll, A. Mainka, R. Kartmann, A. Brandl, H. Bruns and E. Hallam, Labeling of cancer cells with magnetic nanoparticles for MRI. Magn. Reson. Med. 71 (2014) 1896–1905. [Google Scholar]
  30. D.A. Yablonskiy and E.M. Haacke, Theory of NMR signal behavior in magnetically inhomogeneous tissues: The static dephasing regime. Magn. Reson. Med. 32 (1994) 749–763. [Google Scholar]
  31. L. Zecca, M.B.H. Youdim, P. Riederer, J.R. Connor and R.R. Crichton, Iron, brain ageing and neurodegenerative disorders. Nat. Rev. Neurosci. 5 (2004) 863–873. [CrossRef] [PubMed] [Google Scholar]
  32. J. Zhong, R.P. Kennan and J.C. Gore, Effects of susceptibility variations on NMR measurements of diffusion. J. Magn. Reson. 951991 (1969) 267–280. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you