Free Access
Issue
ESAIM: M2AN
Volume 54, Number 5, September-October 2020
Page(s) 1635 - 1660
DOI https://doi.org/10.1051/m2an/2019074
Published online 28 July 2020
  1. M. Ainsworth and J.T. Oden, A posteriori error estimation in finite element analysis. Comput. Methods Appl. Mech. Eng. 142 (1997) 1–88. [Google Scholar]
  2. C. Atkinson and C.R. Champion, Some boundary-value problems for the equation ∇.(|∇ϕ|N ∇ϕ) = 0. Q. J. Mech. Appl. Math. 37 (1984) 401–419. [Google Scholar]
  3. C. Atkinson and C.W. Jones, Similarity solutions in some nonlinear diffusion problems and in boundary-layer flow of a pseudo plastic fluid. Q. J. Mech. Appl. Math. 27 (1974) 193–211. [Google Scholar]
  4. G. Aubert and P. Kornprobst, Mathematical problems in image processing, 2nd edition. In: Vol. 147 of Applied Mathematical Sciences. Springer (2006). [Google Scholar]
  5. I. Babuška and W.C. Rheinboldt, Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15 (1978) 736–754. [Google Scholar]
  6. J. Baranger and K. Najib, Numerical analysis of quasi-newtonian flow obeying the power low or the carreau flow. Numer. Math. 58 (1990) 35–49. [Google Scholar]
  7. J.W. Barrett and W.B. Liu, Finite element approximation of the #-Laplacian. Math. Comput. 61 (1993) 523–537. [Google Scholar]
  8. S. Bartels, Error control and adaptivity for a variational model problem defined on functions of bounded variation. Math. Comput. 84 (2015) 1217–1240. [Google Scholar]
  9. S. Bartels, Numerical methods for nonlinear partial differential equations. In: Vol. 47 of Springer Series in Computational Mathematics. Springer (2015). [Google Scholar]
  10. S. Bartels, M. Milicevic, Alternating direction method of multipliers with variable step sizes Preprint arXiv:1704.06069 (2017). [Google Scholar]
  11. S. Bartels, P. Schön, Adaptive approximation of the monge-kantorovich problem via primal-dual gap estimates, ESAIM: M2AN 51 (2017) 2237–2261. [EDP Sciences] [Google Scholar]
  12. S. Bartels, R.H. Nochetto and A.J. Salgado, Discrete total variation flows without regularization. SIAM J. Numer. Anal. 52 (2014) 363–385. [Google Scholar]
  13. L. Belenki, L. Diening and C. Kreuzer, Optimality of an adaptive finite element method for the #-Laplacian equation. IMA J. Numer. Anal. 32 (2012) 484–510. [Google Scholar]
  14. D. Boffi, F. Brezzi and M. Fortin, Mixed finite element methods and applications. In: Vol. 44 of Springer Series in Computational Mathematics. Springer (2013). [Google Scholar]
  15. S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods, 3rd edition. In: Vol. 15 of Texts in Applied Mathematics. Springer (2008). [Google Scholar]
  16. C. Carstensen and R. Klose, A posteriori finite element error control for the p-Laplace problem. SIAM J. Sci. Comput. 25 (2003) 792–814. [Google Scholar]
  17. C. Carstensen, W.B. Liu and N.N. Yan, A posteriori FE error control for p-Laplacian by gradient recovery in quasi-norm. Math. Comput. 75 (2006) 1599–1616. [Google Scholar]
  18. S.-S. Chow, Finite element error estimates for non-linear elliptic equations of monotone type. Numer. Math. 54 (1989) 373–393. [Google Scholar]
  19. P.G. Ciarlet, The Finite Element Method for Elliptic Problems. Society for Industrial and Applied Mathematics (2002). [Google Scholar]
  20. L. Diening and M. Růžička, Interpolation operators in orlicz–sobolev spaces. Numer. Math. 107 (2007) 107–129. [Google Scholar]
  21. L. Diening and C. Kreuzer, Linear convergence of an adaptive finite element method for the p-Laplacian equation. SIAM J. Numer. Anal. 46 (2008) 614–638. [Google Scholar]
  22. C. Ebmeyer, Nonlinear elliptic problems with #-structure under mixed boundary value conditions in polyhedral domains. Adv. Differ. Equ. 6 (2001) 873–895. [Google Scholar]
  23. C. Ebmeyer, Mixed boundary value problems for nonlinear elliptic systems with p-structure in polyhedral domains. Math. Nachr. 236 (2002) 91–108. [Google Scholar]
  24. C. Ebmeyer, Global regularity in Sobolev spaces for elliptic problems with p-structure on bounded domains, edited by J.F. Rodrigues, G. Seregin, J.M. Urbano. in: Trends in Partial Differential Equations of Mathematical Physics. Birkhäuser Basel, Basel (2005) 81–89. [Google Scholar]
  25. C. Ebmeyer, W.B. Liu, Quasi-norm interpolation error estimates for the piecewise linear finite element approximation of p-Laplacian problems. Numer. Math. 100 (2005) 233–258. [Google Scholar]
  26. C. Ebmeyer, W.B. Liu and M. Steinhauer, Global regularity in fractional order sobolev spaces for the p-Laplace equation on polyhedral domains. Z. Anal. Anwend. 24 (2005) 353–374. [Google Scholar]
  27. I. Ekeland and R. Témam, Convex Analysis and Variational Problems. Society for Industrial and Applied Mathematics (1999). [Google Scholar]
  28. L. El Alaoui, A. Ern and M. Vohralk, Guaranteed and robust a posteriori error estimates and balancing discretization and linearization errors for monotone nonlinear problems. Special Issue on Modeling Error Estimation and Adaptive Modeling. Comput. Methods Appl. Mech. Eng. 200 (2011) 2782–2795. [Google Scholar]
  29. A. Ern and M. Vohralk, Adaptive inexact newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs. SIAM J. Sci. Comput. 35 (2013) A1761–A1791. [Google Scholar]
  30. D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput. Math. App. 2 (1976) 17–40. [Google Scholar]
  31. R. Glowinski and A. Marroco, Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité d’une classe de problèmes de Dirichlet non linéaires. RAIRO Anal. Numer. 9 (1975) 41–76. [Google Scholar]
  32. M. Hintermüller and M. Rincon-Camacho, An adaptive finite element method in L2-TV-based image denoising. Inverse Prob. Imaging 8 (2014) 685–711. [Google Scholar]
  33. K. Kunisch and M. Hintermüller, Total bounded variation regularization as a bilaterally constrained optimization problem. SIAM J. Appl. Math. 64 (2004) 1311–1333. [Google Scholar]
  34. W.B. Liu and J.W. Barrett, A further remark on the regularity of the solutions of the p-Laplacian and its applications to their finite element approximation. Nonlinear Anal. Theory Methods Appl. 21 (1993) 379–387. [Google Scholar]
  35. W.B. Liu and J.W. Barrett, A remark on the regularity of the solutions of the p-Laplacian and its application to their finite element approximation. J. Math. Anal. App. 178 (1993) 470–487. [Google Scholar]
  36. W.B. Liu and N.N. Yan, Quasi-norm a priori and a posteriori error estimates for the nonconforming approximation of p-Laplacian. Numer. Math. 89 (2001) 341–378. [Google Scholar]
  37. W.B. Liu and N.N. Yan, Quasi-norm local error estimators for p-Laplacian. SIAM J. Numer. Anal. 39 (2001) 100–127. [Google Scholar]
  38. W.B. Liu and N.N. Yan, On quasi-norm interpolation error estimation and a posteriori error estimates for p-Laplacian. SIAM J. Numer. Anal. 40 (2002) 1870–1895. [Google Scholar]
  39. M. Milicevic, Finite element discretization and iterative solution of total variation regularized minimization problems and application to the simulation of rate-independent damage evolutions. Ph.D. thesis, Albert-Ludwigs-Universität Freiburg (2019). [Google Scholar]
  40. R.H. Nochetto, K.G. Siebert and A. Veeser, Theory of adaptive finite element methods: an introduction, edited by R. DeVore and A. Kunoth. In: Multiscale, Nonlinear and Adaptive Approximation. Springer, Berlin Heidelberg, Berlin, Heidelberg (2009) 409–542. [Google Scholar]
  41. J.R. Philip, n-diffusion. Aust. J. Phys. 14 (1961) 1–13. [Google Scholar]
  42. S.I. Repin, A posteriori error estimates for approximate solutions to variational problems with strongly convex functionals. J. Math. Sci. 97 (1999) 4311–4328. [Google Scholar]
  43. S.I. Repin, A posteriori error estimates for approximate solutions of variational problems with functionals of power growth. J. Math. Sci. 101 (2000) 3531–3538. [Google Scholar]
  44. S.I. Repin, A posteriori error estimation for nonlinear variational problems by duality theory. J. Math. Sci. 99 (2000) 927–935. [Google Scholar]
  45. S.I. Repin, A posteriori error estimation for variational problems with uniformly convex functionals. Math. Comput. 69 (2000) 481–500. [Google Scholar]
  46. S.I. Repin and L.S. Xanthis, A posteriori error estimation for elasto-plastic problems based on duality theory. Comput. Methods Appl. Mech. Eng. 138 (1996) 317–339. [Google Scholar]
  47. S.I. Repin and L.S. Xanthis, A posteriori error estimation for nonlinear variational problems. C.R. Acad. Sci. – Ser. I Math. 324 (1997) 1169–1174. [Google Scholar]
  48. L.I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms. Phys. D: Nonlinear Phenom. 60 (1992) 259–268. [Google Scholar]
  49. R. Stevenson, Optimality of a standard adaptive finite element method. Found. Comput. Math. 7 (2007) 245–269. [Google Scholar]
  50. M. Thomas, Quasistatic damage evolution with spatial BV-regularization. Discrete Contin. Dyn. Syst. – S 6 (2013) 235–255. [Google Scholar]
  51. A. Veeser, Convergent adaptive finite elements for the nonlinear Laplacian. Numer. Math. 92 (2002) 743–770. [Google Scholar]
  52. R. Verfürth, A Posteriori Error Estimation Techniques for Finite Element Methods. Oxford University Press (2013). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you