Free Access
Issue
ESAIM: M2AN
Volume 54, Number 5, September-October 2020
Page(s) 1725 - 1750
DOI https://doi.org/10.1051/m2an/2020011
Published online 23 July 2020
  1. P.F. Antonietti, L. Beirão da Veiga, D. Mora and M. Verani, A stream virtual element formulation of the Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 52 (2014) 386–404. [Google Scholar]
  2. D.N. Arnold, An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19 (1982) 742–760. [Google Scholar]
  3. E. Artioli, L. Beirão da Veiga, C. Lovadina and E. Sacco, Arbitrary order 2D virtual elements for polygonal meshes: Part I, elastic problem. Comput. Mech. 60 (2017) 355–377. [Google Scholar]
  4. E. Artioli, S. de Miranda, C. Lovadina and L. Patruno, A stress/displacement virtual element method for plane elasticity problems. Comp. Meth. Appl. Mech. Eng. 325 (2017) 155–174. [CrossRef] [Google Scholar]
  5. E. Artioli, S. de Miranda, C. Lovadina and L. Patruno, A family of virtual element methods for plane elasticity problems based on the hellinger-reissner principle. Comput. Methods Appl. Mech. Eng. 340 (2018) 978–999. [Google Scholar]
  6. E. Artioli, S. de Miranda, C. Lovadina and L. Patruno, An equilibrium-based stress recovery procedure for the VEM. Int. J. Numer. Methods Eng. 117 (2019) 885–900. [Google Scholar]
  7. L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L.D. Marini and A. Russo, Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23 (2013) 199–214. [Google Scholar]
  8. L. Beirão da Veiga, F. Brezzi and L.D. Marini, Virtual elements for linear elasticity problems. SIAM J. Numer. Anal. 51 (2013) 794–812. [Google Scholar]
  9. L. Beirão da Veiga, C. Lovadina and D. Mora, A virtual element method for elastic and inelastic problems on polytope meshes. Comput. Methods Appl. Mech. Eng. 295 (2015) 327–346. [Google Scholar]
  10. L. Beirão da Veiga, C. Lovadina and A. Russo, Stability analysis for the Virtual Element Method. Math. Models Methods Appl. Sci. 27 (2017) 2557–2594. [Google Scholar]
  11. L. Beirão da Veiga, C. Lovadina and G. Vacca, Divergence free virtual elements for the Stokes problem on polygonal meshes. ESAIM: M2AN 51 (2017) 509–535. [CrossRef] [EDP Sciences] [Google Scholar]
  12. L. Beirão da Veiga, D. Mora and G. Rivera, Virtual elements for a shear-deflection formulation of Reissner-Mindlin plates. Math. Comput. 88 (2019) 149–178. [Google Scholar]
  13. D. Boffi, F. Brezzi and M. Fortin, Mixed finite element methods and applications. In: Vol. 44 of Springer Series in Computational Mathematics. Springer, Heidelberg (2013). [CrossRef] [Google Scholar]
  14. D. Braess, Finite Elements: Theory, Fast Solvers, and Applications in Elasticity Theory, 3rd edition. Cambridge University Press (2007). [CrossRef] [Google Scholar]
  15. S.C. Brenner, Q. Guan and L.-Y. Sung, Some estimates for virtual element methods. Comput. Methods Appl. Math. 17 (2017) 553–574. [CrossRef] [Google Scholar]
  16. F. Brezzi and L.D. Marini, Virtual element methods for plate bending problems. Comput. Methods Appl. Mech. Eng. 253 (2013) 455–462. [Google Scholar]
  17. F. Brezzi, R.S. Falk and L.D. Marini, Basic principles of mixed virtual element methods. ESAIM: M2AN 48 (2014) 1227–1240. [CrossRef] [EDP Sciences] [Google Scholar]
  18. E. Cáceres, G.N. Gatica and F.A. Sequeira, A mixed virtual element method for a pseudostress-based formulation of linear elasticity. Appl. Numer. Math. 135 (2019) 423–442. [Google Scholar]
  19. C. Chinosi, Virtual elements for the Reissner-Mindlin plate problem. Numer. Methods Part. Differ. Equ. 34 (2018) 1117–1144. [CrossRef] [Google Scholar]
  20. P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam (1978). [Google Scholar]
  21. COMSOL AB, Comsol Multiphysics® User’s Guide (version 3.5). Available from: http://www.comsol.com/ (2008). [Google Scholar]
  22. S. de Miranda and F. Ubertini, A simple hybrid stress element for shear deformable plates. Int. J. Numer. Methods Eng. 65 (2006) 808–833. [Google Scholar]
  23. A.L. Gain, C. Talischi and G.H. Paulino, On the virtual element method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes. Comput. Methods Appl. Mech. Eng. 282 (2014) 132–160. [Google Scholar]
  24. T.J.R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. 2nd edition. Dover (2000). [Google Scholar]
  25. J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. In: Vol. 1 of Travaux et Recherches Mathématiques, No. 17. Dunod, Paris (1968). [Google Scholar]
  26. D. Mora, G. Rivera and I. Velásquez, A virtual element method for the vibration problem of Kirchhoff plates. ESAIM: M2AN 52 (2018) 1437–1456. [CrossRef] [EDP Sciences] [Google Scholar]
  27. K.D. Patil, S. Balakrishnan, C.S. Jog and G.K. Ananthasuresh, A simulation module for microsystems using hybrid finite elements: an overview, edited by K. Vinoy, G. Ananthasuresh, R. Pratap and S. Krupanidhi. In: Micro and Smart Devices and Systems. Springer Tracts in Mechanical Engineering. Springer, New Delhi (2014) 355–373. [CrossRef] [Google Scholar]
  28. T.H.H. Pian and K. Sumihara, Rational approach for assumed stress finite elements. Int. J. Numer. Methods Eng. 20 (1984) 1685–1695. [Google Scholar]
  29. T.H.H. Pian, C.C. Wu, A rational approach for choosing stress terms for hybrid finite element formulations. Int. J. Numer. Methods Eng. 26 (1988) 2331–2343. [Google Scholar]
  30. J.E. Roberts, J.-M. Thomas, Mixed and hybrid methods. In: Vol. 2 of Finite Element Methods (Part 1). Handbook of Numerical Analysis. Elsevier (1991) 523–639. [Google Scholar]
  31. R.L. Taylor and E. Artioli, VEM for inelastic solids. Comput. Methods Appl. Sci. 46 (2018) 381–394. [Google Scholar]
  32. B. Zhang and M. Feng, Virtual element method for two-dimensional linear elasticity problem in mixed weakly symmetric formulation. Appl. Math. Comput. 328 (2018) 1–25. [Google Scholar]
  33. B. Zhang, Y. Yang and M. Feng, Mixed virtual element methods for elastodynamics with weak symmetry. J. Comput. Appl. Math. 353 (2019) 49–71. [Google Scholar]
  34. B. Zhang, J. Zhao, Y. Yang and S. Chen, The nonconforming virtual element method for elasticity problems. J. Comput. Phys. 378 (2019) 394–410. [Google Scholar]
  35. J. Zhao, B. Zhang, S. Chen and S. Mao, The Morley-type virtual element for plate bending problems. J. Sci. Comput. 76 (2018) 610–629. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you