Free Access
Issue
ESAIM: M2AN
Volume 54, Number 5, September-October 2020
Page(s) 1525 - 1568
DOI https://doi.org/10.1051/m2an/2020007
Published online 16 July 2020
  1. R.A. Adams and J.J.F. Fournier, Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam (2003). [Google Scholar]
  2. K. Allali, A priori and a posteriori error estimates for Boussinesq equations. Int. J. Numer. Anal. Model. 2 (2005) 179–196. [Google Scholar]
  3. J.A. Almonacid and G.N. Gatica, A fully-mixed finite element method for the n-dimensional Boussinesq problem with temperature-dependent parameters. Comput. Methods Appl. Math. 20 (2019) 187–213. [CrossRef] [Google Scholar]
  4. J.A. Almonacid, G.N. Gatica and R. Oyarzúa, A mixed-primal finite element method for the Boussinesq problem with temperature-dependent viscosity. Calcolo 55 (2018) 36. [CrossRef] [Google Scholar]
  5. J.A. Almonacid, G.N. Gatica, R. Oyarzúa and R. Ruiz-Baier, A new mixed finite element method for the n-dimensional Boussinesq problem with temperature-dependent viscosity. Preprint 2018-18, Centro de Investigación en Ingeniería Matemática (CI2MA), Universidad de Concepción (2018). [Google Scholar]
  6. M. Alvarez, G.N. Gatica and R. Ruiz-Baier, An augmented mixed-primal finite element method for a coupled flow-transport problem. ESAIM: M2AN 49 (2015) 1399–1427. [CrossRef] [EDP Sciences] [Google Scholar]
  7. G. Barakos, E. Mitsoulis and D. Assimacopoulos, Natural convection flow in a square cavity revisited: laminar and turbulent models with wall functions. Int. J. Numer. Methods Fluids 18 (1994) 695–719. [Google Scholar]
  8. C. Bernardi, B. Métivet and B. Pernaud-Thomas, Couplage des équations de Navier-Stokes et de la chaleur: le modèle et son approximation par éléments finis. RAIRO Modél. Math. Anal. Numér. 29 (1995) 871–921. [Google Scholar]
  9. D. Boffi, F. Brezzi and M. Fortin, Reduced symmetry elements in linear elasticity. Commun. Pure Appl. Anal. 8 (2009) 95–121. [MathSciNet] [Google Scholar]
  10. D. Boffi, F. Brezzi and M. Fortin, Mixed Finite Element Methods and Applications. InVol. 44 of Springer Series in Computational Mathematics. Springer, Heidelberg (2013). [CrossRef] [Google Scholar]
  11. J. Boland and W. Layton, An analysis of the FEM for natural convection problems. Numer. Methods Part. Differ. Equ. 6 (1990) 115–126. [CrossRef] [Google Scholar]
  12. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. In: Vol. 15 of Springer Series in Computational Mathematics. Springer-Verlag, New York (1991). [CrossRef] [Google Scholar]
  13. J. Camaño, C. García and R. Oyarzúa, Analysis of a conservative mixed-FEM for the stationary Navier-Stokes problem. Preprint 2018-25, Centro de Investigación en Ingeniería Matemática (CI2MA), Universidad de Concepción (2018). [Google Scholar]
  14. J. Camaño, C. Muñoz and R. Oyarzúa, Numerical analysis of a dual-mixed problem in non-standard Banach spaces. Electron. Trans. Numer. Anal. 48 (2018) 114–130. [CrossRef] [Google Scholar]
  15. J. Camaño, R. Oyarzúa and G. Tierra, Analysis of an augmented mixed-FEM for the Navier-Stokes problem. Math. Comput. 86 (2017) 589–615. [Google Scholar]
  16. P.G. Ciarlet, Linear and Nonlinear Functional Analysis with Applications. Society for Industrial and Applied Mathematics, Philadelphia, PA (2013). [Google Scholar]
  17. E. Colmenares, G.N. Gatica and S. Moraga, A Banach spaces-based analysis of a new fully-mixed finite element method for the Boussinesq problem. Preprint 2019-04, Centro de Investigación en Ingeniería Matemática (CI2MA), Universidad de Concepción (2019). [available at https://www.ci2ma.udec.cl/publicaciones/prepublicaciones/]. [Google Scholar]
  18. E. Colmenares, G.N. Gatica and R. Oyarzúa, Analysis of an augmented mixed–primal formulation for the stationary Boussinesq problem. Numer. Methods Part. Differ. Equ. 32 (2016) 445–478. [CrossRef] [Google Scholar]
  19. E. Colmenares, G.N. Gatica and R. Oyarzúa, An augmented fully-mixed finite element method for the stationary Boussinesq problem. Calcolo 54 (2017) 167–205. [CrossRef] [Google Scholar]
  20. E. Colmenares and M. Neilan, Dual-mixed finite element methods for the stationary Boussinesq problem. Comput. Math. Appl. 72 (2016) 1828–1850. [Google Scholar]
  21. A. Dalal and M.K. Das, Natural convection in a rectangular cavity heated from below and uniformly cooled from the top and both sides. Numer. Heat Tr. A-Appl. 49 (2006) 301–322. [CrossRef] [Google Scholar]
  22. T. Davis, Algorithm 832: UMFPACK V4.3 – an unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw. 30 (2004) 196–199. [Google Scholar]
  23. G. De Vahl Davis, Natural convection of air in a square cavity: a benchmark numerical solution. Int. J. Numer. Methods Fluids 3 (1983) 249–264. [Google Scholar]
  24. A. Ern and J.-L. Guermond, Theory and practice of finite elements. In: Vol. 159 of Applied Mathematical Sciences, Springer-Verlag, New York (2004) [CrossRef] [Google Scholar]
  25. M. Farhloul and M. Fortin, Dual hybrid methods for the elasticity and the Stokes problems: a unified approach. Numer. Math. 76 (1997) 419–440. [Google Scholar]
  26. M. Farhloul, S. Nicaise and L. Paquet, A mixed formulation of Boussinesq equations: analysis of nonsingular solutions. Math. Comput. 69 (2000) 965–986. [Google Scholar]
  27. M. Farhloul, S. Nicaise and L. Paquet, A refined mixed finite element method for the Boussinesq equations in polygonal domains. IMA J. Numer. Anal. 21 (2001) 525–551. [CrossRef] [Google Scholar]
  28. S.J. Fromm, Potential space estimates for Green potentials in convex domains. Proc. Amer. Math. Soc. 119 (1993) 225–233. [CrossRef] [Google Scholar]
  29. G.N. Gatica, A simple introduction to the mixed finite element method. Theory and applications. In: SpringerBriefs in Mathematics, Springer, Cham (2014) [CrossRef] [Google Scholar]
  30. F. Hecht, New development in FreeFem++. J. Numer. Math. 20 (2012) 251–265. [CrossRef] [MathSciNet] [Google Scholar]
  31. J. Howell and N. Walkington, Inf-sup conditions for twofold saddle point problems. Numer. Math. 118 (2011) 663–693. [Google Scholar]
  32. J. Howell and N. Walkington, Dual-mixed finite element methods for the Navier-Stokes equations. ESAIM: M2AN 47 (2013) 789–805. [CrossRef] [EDP Sciences] [Google Scholar]
  33. J. Howell and N. Walkington, Dual-mixed finite element methods for the Navier–Stokes equations. Preprint arXiv:1603.09231 [math.NA] (2016). [Google Scholar]
  34. P. Huang, W. Li and Z. Si, Several iterative schemes for the stationary natural convection equations at different Rayleigh numbers. Numer. Methods Part. Differ. Equ. 31 (2015) 761–776. [CrossRef] [Google Scholar]
  35. M. Ishii and T. Hibiki, Thermo-fluid Dynamics of Two-phase Flow, 2nd edition. SpringerLink: Bcher, Springer, New York (2010). [Google Scholar]
  36. R. Oyarzúa, T. Qin and D. Schötzau, An exactly divergence-free finite element method for a generalized Boussinesq problem. IMA J. Numer. Anal. 34 (2014) 1104–1135. [CrossRef] [MathSciNet] [Google Scholar]
  37. R. Oyarzúa and P. Zúñiga, Analysis of a conforming finite element method for the Boussinesq problem with temperature-dependent parameters. J. Comput. Appl. Math. 323 (2017) 71–94. [Google Scholar]
  38. A. Quarteroni and A. Valli, Numerical approximation of partial differential equations. In: Vol. 23 of Springer Series in Computational Mathematics, Springer-Verlag, Berlin (1994). [CrossRef] [Google Scholar]
  39. L.R. Scott and M. Vogelius, Conforming finite element methods for incompressible and nearly incompressible continua. Large-Scale Computations in Fluid Mechanics, Part 2 (La Jolla, Calif., 1983). In: Vol. 22 of Lect. Appl. Math, Amer. Math. Soc, Providence, RI (1985). [Google Scholar]
  40. L.R. Scott and M. Vogelius, Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials. ESAIM: M2AN 19 (1985) 111–143. [CrossRef] [EDP Sciences] [Google Scholar]
  41. M. Tabata and D. Tagami, Error estimates of finite element methods for nonstationary thermal convection problems with temperature-dependent coefficients. Numer. Math. 100 (2005) 351–372. [Google Scholar]
  42. M. Vogelius, A right-inverse for the divergence operator in spaces of piecewise polynomials. Application to the p-version of the finite element method. Numer. Math. 41 (1983) 19–37. [Google Scholar]
  43. S. Zhang, A new family of stable mixed finite elements for the 3D Stokes equations. Math. Comput. 74 (2005) 543–554. [Google Scholar]
  44. S. Zhang, Quadratic divergence-free finite elements on Powell-Sabin tetrahedral grids. Calcolo 48 (2011) 211–244. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you