Free Access
Volume 54, Number 5, September-October 2020
Page(s) 1751 - 1776
Published online 23 July 2020
  1. G. Allaire and S.M. Kaber, Numerical Linear Algebra. Springer, New York (2008). [CrossRef] [Google Scholar]
  2. R. Altmann, P. Henning and D. Peterseim, Quantitative Anderson localization of Schrödinger eigenstates under disorder potentials. Math. Models Methods Appl. Sci. (M3AS). 30 (2020) 917–955. [CrossRef] [Google Scholar]
  3. R. Altmann, P. Henning and D. Peterseim, The J-method for the Gross-Pitaevskii eigenvalue problem. Preprint arXiv:1908.00333 (2019). [Google Scholar]
  4. P.M. Anselone and L.B. Rall, The solution of characteristic value-vector problems by Newton’s method. Numer. Math. 11 (1968) 38–45. [Google Scholar]
  5. K.-J. Bathe and E.L. Wilson, Solution methods for eigenvalue problems in structural mechanics. Int. J. Numer. Methods Eng. 6 (1973) 213–226. [Google Scholar]
  6. F. Bozorgnia, Convergence of inverse power method for first eigenvalue of p-Laplace operator. Numer. Funct. Anal. Optim. 37 (2016) 1378–1384. [Google Scholar]
  7. H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York (2010). [CrossRef] [Google Scholar]
  8. S. Burger, R. Klose, A. Schädle, F. Schmidt and L. Zschiedrich, Adaptive FEM solver for the computation of electromagnetic eigenmodes in 3D photonic crystal structures. In: Scientific Computing in Electrical Engineering, edited by A.M. Anile, G. Ali and G. Mascali. Springer, Berlin, Heidelberg (2006) 169–173. [CrossRef] [Google Scholar]
  9. Concepts Development Team, Webpage of Numerical C++ Library Concepts. Available from (2019). [Google Scholar]
  10. R. Courant, Über die Eigenwerte bei den Differentialgleichungen der mathematischen Physik. Math. Z. 7 (1920) 1–57. [CrossRef] [Google Scholar]
  11. G. Demesy and S. John, Solar energy trapping with modulated silicon nanowire photonic crystals. J. Appl. Phys. 112 (2012) 074326. [Google Scholar]
  12. P. Deuflhard, Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms. Springer-Verlag Berlin Heidelberg (2004). [Google Scholar]
  13. W. Dörfler, A. Lechleiter, M. Plum, G. Schneider and C. Wieners, Photonic Crystals. Mathematical Analysis and Numerical Approximation, Springer-Verlag, Berlin (2011). [CrossRef] [Google Scholar]
  14. S. Eastman and D. Estep, A power method for nonlinear operators. Appl. Anal. 86 (2007) 1303–1314. [Google Scholar]
  15. C. Effenberger, Robust solution methods for nonlinear eigenvalue problems. Ph.D. thesis, EPFL, Lausanne (2013). [Google Scholar]
  16. C. Effenberger, D. Kressner and C. Engström, Linearization techniques for band structure calculations in absorbing photonic crystals. Int. J. Numer. Methods Eng. 89 (2012) 180–191. [Google Scholar]
  17. C. Engström, On the spectrum of a holomorphic operator-valued function with applications to absorptive photonic crystals. Math. Models Methods Appl. Sci. (M3AS) 20 (2010) 1319–1341. [CrossRef] [Google Scholar]
  18. M.A. Erickson, R.S. Smith and A.J. Laub, Power methods for calculating eigenvalues and eigenvectors of spectral operators on Hilbert spaces. Int. J. Control 62 (1995) 1117–1128. [Google Scholar]
  19. P. Frauenfelder and C. Lage, Concepts – an object-oriented software package for partial differential equations. ESAIM: M2AN 36 (2002) 937–951. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  20. M. Garcia-Vergara, G. Demésy and F. Zolla, Extracting an accurate model for permittivity from experimental data: hunting complex poles from the real line. Opt. Lett. 42 (2017) 1145–1148. [CrossRef] [PubMed] [Google Scholar]
  21. S. Giani and I.G. Graham, Adaptive finite element methods for computing band gaps in photonic crystals. Numer. Math. 121 (2012) 31–64. [Google Scholar]
  22. Q. Gong and X. Hu editors, Photonic Crystals: Principles and Applications. CRC Press, Boca Raton, FL (2014). [CrossRef] [Google Scholar]
  23. A. Günnel, R. Herzog and E. Sachs, A note on preconditioners and scalar products in Krylov subspace methods for self-adjoint problems in Hilbert space. Electron. Trans. Numer. Anal. 41 (2014) 13–20. [Google Scholar]
  24. T.-M. Huang, W.-W. Lin and V. Mehrmann, A Newton-type method with nonequivalence deflation for nonlinear eigenvalue problems arising in photonic crystal modeling. SIAM J. Sci. Comput. 38 (2016) B191–B218. [Google Scholar]
  25. J.D. Jackson, Classical Electrodynamics, 3rd edition. John Wiley & Sons, New York (1999). [Google Scholar]
  26. E. Jarlebring, W. Michiels and K. Meerbergen, A linear eigenvalue algorithm for the nonlinear eigenvalue problem. Numer. Math. 122 (2012) 169–195. [Google Scholar]
  27. J.D. Joannopoulos, S.G. Johnson, J.N. Winn and R.D. Meade, Photonic Crystals: Molding the Flow of Light. Princeton University Press, Princeton, NJ (2008). [Google Scholar]
  28. S. John, Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58 (1987) 2486–2489. [CrossRef] [PubMed] [Google Scholar]
  29. S. John, Why trap light? Nat. Mater. 11 (2012) 997–999. [CrossRef] [PubMed] [Google Scholar]
  30. D. Kressner, A block Newton method for nonlinear eigenvalue problems. Numer. Math. 114 (2009) 355–372. [Google Scholar]
  31. P. Kuchment, The mathematics of photonic crystals. In: Mathematical Modeling in Optical Science. SIAM, Philadelphia, PA (2001) 207–272. [CrossRef] [Google Scholar]
  32. J. López-Gómez and C. Mora-Corral, Algebraic Multiplicity of Eigenvalues of Linear Operators. Birkhäuser Verlag, Basel (2007). [Google Scholar]
  33. M. Luo and Q.H. Liu, Three-dimensional dispersive metallic photonic crystals with a bandgap and a high cutoff frequency. J. Opt. Soc. Am. A 27 (2010) 1878–1884. [Google Scholar]
  34. V. Mehrmann and A. Miedlar, Adaptive computation of smallest eigenvalues of self-adjoint elliptic partial differential equations. Numer. Linear Algebr. 18 (2011) 387–409. [CrossRef] [Google Scholar]
  35. V. Mehrmann and H. Voss, Nonlinear eigenvalue problems: a challenge for modern eigenvalue methods. GAMM-Mitt. 27 (2004) 121–152. [CrossRef] [MathSciNet] [Google Scholar]
  36. A. Miedlar, Inexact adaptive finite element methods for elliptic PDE eigenvalue problems. Ph.D. thesis, Technische Universität Berlin (2011). [Google Scholar]
  37. M.R. Osborne, A new method for the solution of eigenvalue problems. Comput. J. 7 (1964) 228–232. [Google Scholar]
  38. L.P. Pitaevskii and S. Stringari, Bose-Einstein Condensation. The Clarendon Press, Oxford University Press, Oxford (2003). [Google Scholar]
  39. A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations. Springer, Berlin (1994). [CrossRef] [Google Scholar]
  40. A. Raman and S. Fan, Perturbation theory for plasmonic modulation and sensing. Phys. Rev. B 83 (2011) 205131. [Google Scholar]
  41. Y. Saad, Numerical Methods for Large Eigenvalue Problems. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2011). [CrossRef] [Google Scholar]
  42. K. Schmidt and R. Kappeler, Efficient computation of photonic crystal waveguide modes with dispersive material. Opt. Express 18 (2010) 7307–7322. [CrossRef] [PubMed] [Google Scholar]
  43. K. Schmidt and P. Kauf, Computation of the band structure of two-dimensional photonic crystals with hp–finite elements. Comput. Methods Appl. Mech. Eng. 198 (2009) 1249–1259. [Google Scholar]
  44. K. Schreiber, Nonlinear eigenvalue problems: Newton-type methods and nonlinear Rayleigh functionals. Ph.D. thesis, Technische Universität Berlin (2008). [Google Scholar]
  45. P. Schulze, B. Unger, C. Beattie and S. Gugercin, Data-driven structured realization. Linear Algebr. Appl. 537 (2018) 250–286. [CrossRef] [Google Scholar]
  46. A. Spence and C. Poulton, Photonic band structure calculations using nonlinear eigenvalue techniques. J. Comput. Phys. 204 (2005) 65–81. [Google Scholar]
  47. Y. Su and Z. Bai, Solving rational eigenvalue problems via linearization. SIAM J. Matrix Anal. Appl. 32 (2011) 201–216. [Google Scholar]
  48. K. Tsakmadis, In the limelight. Nat. Mater. 11 (2012) 1000–1001. [CrossRef] [PubMed] [Google Scholar]
  49. H. Voss, A rational spectral problem in fluid–solid vibration. Electron. Trans. Numer. Anal. 16 (2003) 93–105. [Google Scholar]
  50. A. Weinstein and W. Stenger, Methods of Intermediate Problems for Eigenvalues. Academic Press, New York, London (1972). [Google Scholar]
  51. J. Wloka, Partial Differential Equations. Cambridge University Press, Cambridge (1987). [Google Scholar]
  52. E. Zeidler, Nonlinear Functional Analysis and its Applications II/A: Linear Monotone Operators, Springer-Verlag, New York, 1990. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you