Free Access
Volume 54, Number 5, September-October 2020
Page(s) 1777 - 1795
Published online 28 July 2020
  1. Z. Bai, J. Demmel, J. Dongarra, A. Ruhe and H. van der Vorst, Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM (2000). [Google Scholar]
  2. U. Banerjee and J.E. Osborn, Estimation of the effect of numerical integration in finite element eigenvalue approximation. Numer. Math. 56 (1989) 735–762. [Google Scholar]
  3. P. Bogacki and L.F. Shampine, An efficient Runge–Kutta (4, 5) pair. Comput. Math. App. 32 (1996) 15–28. [Google Scholar]
  4. X.-C. Cai, The use of pointwise interpolation in domain decomposition methods with nonnested meshes. SIAM J. Sci. Comput. 16 (1995) 250–256. [Google Scholar]
  5. K. Carlsson, KristofferC/JuAFEM.jl: finite element toolbox for Julia. Available from: (2020). [Google Scholar]
  6. E.B. Davies, Metastable states of symmetric Markov semigroups II. J. London Math. Soc. s2–26 (1982) 541–556. [Google Scholar]
  7. M. Dellnitz and O. Junge, On the approximation of complicated dynamical behavior. SIAM J. Numer. Anal. 36 (1999) 491–515. [Google Scholar]
  8. P. Deuflhard and M. Weber, Robust Perron cluster analysis in conformation dynamics. Linear Algebra Appl. 398 (2005) 161–184. [Google Scholar]
  9. A. Ern and J. Guermond, Theory and Practice of Finite Elements. In: Vol 159 of Applied Mathematical Sciences. Springer Science & Business Media (2004). [Google Scholar]
  10. L. Evans, Partial Differential Equations. In: Vol 19 of Graduate Studies in Mathematics. American Mathematical Society (1997). [Google Scholar]
  11. G. Froyland, Statistically optimal almost-invariant sets. Phys. D: Nonlinear Phenom. 200 (2005) 205–219. [Google Scholar]
  12. G. Froyland, Dynamic isoperimetry and the geometry of Lagrangian coherent structures. Nonlinearity 28 (2015) 3587–3622. [Google Scholar]
  13. G. Froyland and O. Junge, On fast computation of finite-time coherent sets using radial basis functions. Chaos: Interdiscip. J. Nonlinear Sci. 25 (2015) 087409. [Google Scholar]
  14. G. Froyland and O. Junge, Robust FEM-based extraction of finite-time coherent sets using scattered, sparse, and incomplete trajectories. SIAM J. Appl. Dyn. Syst. 17 (2018) 1891–1924. [Google Scholar]
  15. G. Froyland and E. Kwok, A dynamic Laplacian for identifying Lagrangian coherent structures on weighted Riemannian manifolds. To appear in: J. Nonlinear. Sci. (2017). [Google Scholar]
  16. G. Froyland and K. Padberg, Almost-invariant sets and invariant manifolds-connecting probabilistic and geometric descriptions of coherent structures in flows. Phys. D: Nonlinear Phenom. 238 (2009) 1507–1523. [Google Scholar]
  17. G. Froyland, S. Lloyd and N. Santitissadeekorn, Coherent sets for nonautonomous dynamical systems. Phys. D: Nonlinear Phenom. 239 (2010) 1527–1541. [Google Scholar]
  18. G. Froyland, C. Rock and K. Sakellariou, Sparse eigenbasis approximation: multiple feature extraction across spatiotemporal scales with application to coherent set identification. Commun. Nonlinear Sci. Numer. Simul. 77 (2019) 81–107. [Google Scholar]
  19. I.M. Gelfand and S.V. Fomin, Calculus of Variations. Prentice-Hall, Inc. (1963). [Google Scholar]
  20. D. Karrasch and J. Keller, A geometric heat-flow theory of Lagrangian coherent structures. J. Nonlinear Sci. 30 (2020) 1849–1888. [Google Scholar]
  21. T. Kato, Perturbation Theory for Linear Operators, reprint of the 2nd edition. In: Classics in Mathematics. Springer (1995). [Google Scholar]
  22. A. Keselman, et al., Geometry/VoronoiDelaunay.jl: fast and robust Voronoi & Delaunay tesselation creation with Julia. Available from: (2000). [Google Scholar]
  23. C. Rackauckas and Q. Nie, DifferentialEquations.jl – a performant and feature-rich ecosystem for solving differential equations in Julia. J. Open Res. Softw. 5 (2017) 15. [Google Scholar]
  24. I.I. Rypina, M.G. Brown, F.J. Beron-Vera, H. Koçak, M.J. Olascoaga and I.A. Udovydchenkov, On the Lagrangian dynamics of atmospheric zonal jets and the permeability of the stratospheric polar vortex. J. Atmos. Sci. 64 (2007) 3595–3610. [Google Scholar]
  25. G. Strang and G.J. Fix, An Analysis of the Finite Element Method. In: Prentice Hall Series in Automatic Computation. Prentice-Hall Englewood Cliffs, NJ (1973). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you