Free Access
Issue
ESAIM: M2AN
Volume 54, Number 5, September-October 2020
Page(s) 1689 - 1723
DOI https://doi.org/10.1051/m2an/2020009
Published online 28 July 2020
  1. R.A. Adams and J.J.F. Fournier, Sobolev Spaces, 2nd edition. In: Vol. 140 of Pure and Applied Mathematics (Amsterdan). Elsevier/Academic Press, Amsterdam (2003). [Google Scholar]
  2. M. Amara, D. Capatina and L. Lizaik, Coupling of Darcy-Forchheimer and compressible Navier-Stokes equations with heat transfer. SIAM J. Sci. Comput. 31 (2008/09) 1470–1499. [Google Scholar]
  3. T. Arbogast and D.S. Brunson, A computational method for approximating a Darcy-Stokes system governing a vuggy porous medium. Comput. Geosci. 11 (2007) 207–218. [Google Scholar]
  4. T. Arbogast and H.L. Lehr, Homogenization of a Darcy-Stokes system modeling vuggy porous media. Comput. Geosci. 10 (2006) 291–302. [Google Scholar]
  5. M.M. Arzanfudi, S. Saeid, R. Al-Khoury and L.J. Sluys, Multidomain-staggered coupling technique for Darcy-Navier Stokes multiphase flow: an application to CO2 geosequestration. Finite Elem. Anal. Des. 121 (2016) 52–63. [Google Scholar]
  6. K. Aziz and A. Settari, Petroleum Reservoir Simulation. Applied Science Publishers LTD, London (1979). [Google Scholar]
  7. L. Badea, M. Discacciati and A. Quarteroni, Numerical analysis of the Navier–Stokes/Darcy coupling. Numer. Math. 115 (2010) 195–227. [Google Scholar]
  8. A. Bagchi and F.A. Kulacki, Natural Convection in Superposed Fluid-Porous Layers. Springer Briefs in Applied Sciences and Technology. Springer, New York (2014). [Google Scholar]
  9. G.S. Beavers and D.D. Joseph, Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30 (1967) 197–207. [Google Scholar]
  10. C. Bernardi and G. Raugel, Analysis of some finite elements for the Stokes problem. Math. Comput. 44 (1985) 71–79. [Google Scholar]
  11. H. Brezis and P. Mironescu, Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces. J. Evol. Equ. 1 (2001) 387–404. [Google Scholar]
  12. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. In: Vol 15 of Springer Series in Computational Mathematics. Springer-Verlag, New York (1991). [Google Scholar]
  13. J. Camaño, G.N. Gatica, R. Oyarzúa and G. Tierra, An augmented mixed finite element method for the Navier-Stokes equations with variable viscosity. SIAM J. Numer. Anal. 54 (2016) 1069–1092. [Google Scholar]
  14. C. Canuto and F. Cimolin, A sweating model for the internal ventilation of a motorcycle helmet. Comput. Fluids 43 (2011) 29–37. [Google Scholar]
  15. S. Caucao, G.N. Gatica, R. Oyarzúa and I. Šebestová, A fully-mixed finite element method for the Navier–Stokes/Darcy coupled problem with nonlinear viscosity. J. Numer. Math. 25 (2017) 55–88. [Google Scholar]
  16. A. Çeşmelioğlu and B. Rivière, Analysis of time-dependent Navier-Stokes flow coupled with Darcy flow. J. Numer. Math. 16 (2008) 249–280. [MathSciNet] [Google Scholar]
  17. P.G. Ciarlet, Linear and Nonlinear Functional Analysis with Applications. Society for Industrial and Applied Mathematics, Philadelphia, PA (2013). [Google Scholar]
  18. F. Cimolin and M. Discacciati, Navier–Stokes/Forchheimer models for filtration through porous media. Appl. Numer. Math. 72 (2013) 205–224. [Google Scholar]
  19. T. Davis, Algorithm 832: UMFPACK V4.3 – an unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw. 30 (2004) 196–199. [Google Scholar]
  20. M. Discacciati, Domain Decomposition Methods for the Coupling of Surface and Groundwater Flows. École Polytechnique Fédérale de Lausanne, Switzerland (2004). [Google Scholar]
  21. M. Discacciati and R. Oyarzúa, A conforming mixed finite element method for the Navier–Stokes/Darcy coupled problem. Numer. Math. 135 (2017) 571–606. [Google Scholar]
  22. M. Discacciati, E. Miglio and A. Quarteroni, Mathematical and numerical models for coupling surface and groundwater flows. Appl. Numer. Math. 43 (2002) 57–74. [Google Scholar]
  23. A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements. In: Vol. 159 of Applied Mathematical Sciences. Springer-Verlag, New York (2004). [Google Scholar]
  24. V.J. Ervin, E.W. Jenkins and S. Sun, Coupled generalized nonlinear Stokes flow with flow through a porous medium. SIAM J. Numer. Anal. 47 (2009) 929–952. [Google Scholar]
  25. M. Farhloul, A mixed finite element method for a nonlinear Dirichlet problem. IMA J. Numer. Anal. 18 (1998) 121–132. [Google Scholar]
  26. J. Faulkner, B.X. Hu, S. Kish and F. Hua, Laboratory analog and numerical study of groundwater flow and solute transport in a karst aquifer with conduit and matrix domains. J. Contam. Hydrol. 110 (2009) 34–44. [PubMed] [Google Scholar]
  27. G.N. Gatica, A Simple Introduction to the Mixed Finite Element Method. Theory and Applications. Springer Briefs in Mathematics. Springer, Cham (2014). [Google Scholar]
  28. G.N. Gatica, S. Meddahi and R. Oyarzúa, A conforming mixed finite-element method for the coupling of fluid flow with porous media flow. IMA J. Numer. Anal. 29 (2009) 86–108. [Google Scholar]
  29. G.N. Gatica, R. Oyarzúa and F.-J. Sayas, Convergence of a family of Galerkin discretizations for the Stokes-Darcy coupled problem. Numer. Methods Partial Differ. Equ. 27 (2011) 721–748. [Google Scholar]
  30. G.N. Gatica, R. Oyarzúa and F.-J. Sayas, Analysis of fully-mixed finite element methods for the Stokes-Darcy coupled problem. Math. Comput. 80 (2011) 1911–1948. [Google Scholar]
  31. G.N. Gatica, R. Oyarzúa and F.-J. Sayas, A twofold saddle point approach for the coupling of fluid flow with nonlinear porous media flow. IMA J. Numer. Anal. 32 (2012) 845–887. [Google Scholar]
  32. J. Geng, W1,p estimates for elliptic problems with Neumann boundary conditions in Lipschitz domains. Adv. Math. 229 (2012) 2427–2448. [Google Scholar]
  33. V. Girault and P.A. Raviart, Finite Element Methods for Navier–Stokes Equations. Theory and algorithms. In: Vol. 5 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (1986). [Google Scholar]
  34. V. Girault and M.F. Wheeler, Numerical discretization of a Darcy-Forchheimer model. Numer. Math. 110 (2008) 161–198. [Google Scholar]
  35. R. Glowinski and A. Marroco, Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité, d’une classe de problèmes de Dirichlet non linéaires, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér. 9 (1975) 41–76. [Google Scholar]
  36. P. Grisvard, Théorèmes de traces relatifs à un polyèdre. C. R. Acad. Sci. Paris Sér. A 278 (1974) 1581–1583. [Google Scholar]
  37. P. Grisvard, Elliptic problems in nonsmooth domains. In: Vol. 24 of Monographs and Studies in Mathematics. Pitman (Advanced Publishing Program), Boston, MA (1985). [Google Scholar]
  38. P. Grisvard, Problèmes aux limites dans les polygones. Mode d’emploi. EDF Bull. Direction Études Rech. Sér. C Math. Inform. 1 (1986) 21–59. [Google Scholar]
  39. F. Hecht, New development in FreeFem++. J. Numer. Math. 20 (2012) 251–265. [Google Scholar]
  40. W. Jäger and A. Mikelić, On the interface boundary condition of Beavers, Joseph, and Saffman. SIAM J. Appl. Math. 60 (2000) 1111–1127. [Google Scholar]
  41. L.I.G. Kovasznay, Laminar flow behind a two-dimensional grid. Proc. Cambridge Philos. Soc. 44 (1948) 58–62. [Google Scholar]
  42. H. Manouzi and M. Farhloul, Mixed finite element analysis of a non-linear three-fields Stokes model. IMA J. Numer. Anal. 21 (2001) 143–164. [Google Scholar]
  43. M. Moraiti, On the quasistatic approximation in the Stokes-Darcy model of groundwater-surface water flows. J. Math. Anal. Appl. 394 (2012) 796–808. [Google Scholar]
  44. H. Pan and H. Rui, Mixed element method for two-dimensional Darcy-Forchheimer model. J. Sci. Comput. 52 (2012) 563–587. [Google Scholar]
  45. C. Pozrikidis and D.A. Farrow, A model of fluid flow in solid tumors. Ann. Biomed. Eng. 31 (2003) 181–194. [PubMed] [Google Scholar]
  46. A. Quarteroni and A. Valli, Numerical approximation of partial differential equations. In: Vol. 23 of Springer Series in Computational Mathematics. Springer–Verlag, Berlin (1994). [Google Scholar]
  47. P.-A. Raviart and J.M. Thomas, A mixed finite element method for 2nd order elliptic problems. In: Vol. 606 of Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975). Lecture Notes in Math. Springer, Berlin (1977) 292–315. [Google Scholar]
  48. D. Ruth and H. Ma, On the derivation of the Forchheimer equation by means of the averaging theorem. Transp. Porous Media 7 (1992) 255–264. [Google Scholar]
  49. P. Saffman, On the boundary condition at the interface of a porous medium. Stud. Appl. Math. 50 (1971) 77–84. [Google Scholar]
  50. B. Scheurer, Existence et approximation de points selles pour certains problèmes non linéaires. RAIRO Anal. Numér. 11 (1977) 369–400. [Google Scholar]
  51. R.E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. In: Vol. 49 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (1997). [Google Scholar]
  52. M. Sugihara-Seki and B.M. Fu, Blood flow and permeability in microvessels. Fluid Dynam. Res. 37 (2005) 82–132. [Google Scholar]
  53. T. Tang, Z. Li, J.M. McDonough and P.D. Hislop, Numerical investigation of the “poor man’s Navier-Stokes equations” with Darcy and Forchheimer terms. Int. J. Bifur. Chaos Appl. Sci. Eng. 26 (2016) 1650086. [Google Scholar]
  54. R. Temam, Navier–Stokes Equations. Theory and Numerical Analysis. In: Vol. 2 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam-New York-Oxford (1977). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you