Free Access
Volume 54, Number 6, November-December 2020
Page(s) 1821 - 1847
Published online 31 July 2020
  1. R. Alicandro, L. De Luca, A. Garroni and M. Ponsiglione, Metastability and dynamics of discrete topological singularities in two dimensions: a Γ-convergence approach. Arch. Ration. Mech. Anal. 214 (2014) 269–330. [Google Scholar]
  2. R. Alicandro, L. De Luca, A. Garroni and M. Ponsiglione, Minimising movements for the motion of discrete screw dislocations along glide directions. Calc. Var. Partial Differ. Equ. 56 (2017) 19, Art. 148. [Google Scholar]
  3. N. Berglund, Kramers’ law: validity, derivations and generalisations. Markov Process. Relat. Fields 19 (2013) 459–490. [Google Scholar]
  4. W.-J. Beyn, A. Champneys, E. Doedel, W. Govaerts, Y.A. Kuznetsov and B. Sandstede, Numerical continuation, and computation of normal forms. In: Handbook of Dynamical Systems III: Towards Applications (2002). [Google Scholar]
  5. E. Bitzek, J.R. Kermode and P. Gumbsch, Atomistic aspects of fracture. Int. J. Fract. 191 (2015) 13–30. [Google Scholar]
  6. J. Braun and C. Ortner, Sharp uniform convergence rate of the supercell approximation of a crystalline defect. Preprint arXiv:1811.08741 (2018). [Google Scholar]
  7. J. Braun, M.H. Duong and C. Ortner, Thermodynamic limit of the transition rate of a crystalline defect. Preprint arXiv:1810.11643 (2018). [Google Scholar]
  8. J. Braun, M. Buze and C. Ortner, The effect of crystal symmetries on the locality of screw dislocation cores. SIAM J. Math. Anal. 51 (2019). [Google Scholar]
  9. F. Brezzi, J. Rappaz and P. Raviart, Finite dimensional approximation of nonlinear problems. Numer. Math. 36 (1980) 1–25. [Google Scholar]
  10. K.B. Broberg, Cracks and Fracture. Academic Press, San Diego (1999). [Google Scholar]
  11. M. Buze, T. Hudson and C. Ortner, Analysis of an atomistic model for anti-plane fracture. Math. Models Methods Appl. Sci. 29 (2019) 2469–2521. [Google Scholar]
  12. J. Chaussidon, M. Fivel and D. Rodney, The glide of screw dislocations in bcc Fe: atomistic static and dynamic simulations. Acta Mater. 54 (2006) 3407–3416. [Google Scholar]
  13. K.A. Cliffe, A. Spence and S.J. Tavener, The numerical analysis of bifurcation problems with application to fluid mechanics. Acta Numer. 9 (2000) 39–131. [Google Scholar]
  14. V. Ehrlacher, C. Ortner and A.V. Shapeev, Analysis of boundary conditions for crystal defect atomistic simulations. Preprint arXiv:1306.5334v4 (2016). [Google Scholar]
  15. V. Ehrlacher, C. Ortner and A.V. Shapeev, Analysis of boundary conditions for crystal defect atomistic simulations. Arch. Ration. Mech. Anal. 222 (2016) 1217–1268. [Google Scholar]
  16. H. Eyring, The activated complex in chemical reactions. J. Chem. Phys. 3 (1935) 107–115. [Google Scholar]
  17. L.B. Freund, Dynamic Fracture Mechanics. Cambridge Monographs on Mechanics. Cambridge University Press (1990). [Google Scholar]
  18. A. Garg, A. Acharya and C.E. Maloney, A study of conditions for dislocation nucleation in coarser-than-atomistic scale models. J. Mech. Phys. Solids 75 (2015) 76–92. [Google Scholar]
  19. E.H. Glaessgen, E. Saether, J. Hochhalter and V. Yamakov, Modeling near-crack-tip plasticity from nano-to micro-scales. Collection of Technical Papers – AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference (2010). [Google Scholar]
  20. P. Gumbsch and R.M. Cannon, Atomistic aspects of brittle fracture. MRS Bull. 25 (2000) 15–20. [Google Scholar]
  21. P. Hänggi, P. Talkner and M. Borkovec, Reaction-rate theory: fifty years after Kramers. Rev. Mod. Phys. 62 (1990) 251–341. [Google Scholar]
  22. T. Hudson, Upscaling a model for the thermally-driven motion of screw dislocations. Arch. Ration. Mech. Anal. 224 (2017) 291–352. [Google Scholar]
  23. T. Hudson and C. Ortner, Existence and stability of a screw dislocation under anti-plane deformation. Arch. Ration. Mech. Anal. 213 (2014) 887–929. [Google Scholar]
  24. T. Hudson and C. Ortner, Analysis of stable screw dislocation configurations in an anti-plane lattice model. SIAM J. Math. Anal. 41 (2015) 291–320. [Google Scholar]
  25. F. John and L. Nirenberg, On functions of bounded mean oscillation. Commun. Pure Appl. Math. 14 (1961) 415–426. [Google Scholar]
  26. H.B. Keller, Numerical solution of bifurcation and nonlinear eigenvalue problems. In: Applications of bifurcation theory: proceedings of an Advanced Seminar. Mathematics Research Center, the University of Wisconsin at Madison (1977) 359–384. [Google Scholar]
  27. L. Landau, E. Lifshitz and J. Sykes, Theory of elasticity. In: Course of Theoretical Physics. Pergamon Press (1989). [Google Scholar]
  28. S. Lang, Fundamentals of Differential Geometry, Graduate Texts in Mathematics. New York Springer (1999). [Google Scholar]
  29. B. Lawn, Fracture of brittle solids. 2nd edition. Cambridge Solid State Science Series. Cambridge University Press (1993). [Google Scholar]
  30. X. Li, A bifurcation study of crack initiation and kinking. Eur. Phys. J. B 86 (2013) 258. [EDP Sciences] [Google Scholar]
  31. X. Li, A numerical study of crack initiation in a bcc iron system based on dynamic bifurcation theory. J. Appl. Phys. 116 (2014) 164314. [Google Scholar]
  32. C. Ortner and A. Shapeev, Interpolants of lattice functions for the analysis of atomistic/continuum multiscale methods. Preprint arXiv:1204.3705 (2012). [Google Scholar]
  33. C. Ortner and E. Süli, A note on linear elliptic systems on ℝd. Preprint arXiv:1202.3970 (2012). [Google Scholar]
  34. C. Ortner and F. Theil, Justification of the cauchy–born approximation of elastodynamics. Arch. Ration. Mech. Anal. 207 (2013). [PubMed] [Google Scholar]
  35. J.R. Rice, Mathematical analysis in the mechanics of fracture, edited by H. Liebowitz. In: Vol. 2 of Mathematical Fundamentals. Fracture: An Advanced Treatise (1968) 191–311. [Google Scholar]
  36. L. Richardson, The approximate arithmetical solution by finite differences of physical problems including differential equations, with an application to the stresses in a masonry dam. Philos. Trans. R. Soc. 210 (1911) 307–357. [Google Scholar]
  37. R.T. Rockafellar and R.J.-B. Wets, Variational Analysis. Springer (1998). [Google Scholar]
  38. W. Rudin, Real and Complex Analysis. McGraw-Hill (1966). [Google Scholar]
  39. C. Sun and Z.-H. Jin, Fracture Mechanics. Academic Press (2012). [Google Scholar]
  40. C. Taylor and J. Dawes, Snaking and isolas of localised states in bistable discrete lattices. Phys. Lett. A 375 (2010) 14–22. [Google Scholar]
  41. R. Thomson, C. Hsieh and V. Rana, Lattice trapping of fracture cracks. J. Appl. Phys. 42 (1971) 3154–3160. [Google Scholar]
  42. E.P. Wigner, The Transition State Method. Springer Berlin Heidelberg, Berlin, Heidelberg (1997) 163–175. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you