Free Access
Issue
ESAIM: M2AN
Volume 54, Number 6, November-December 2020
Page(s) 1797 - 1820
DOI https://doi.org/10.1051/m2an/2020023
Published online 31 July 2020
  1. S. Adjerid and T.C. Massey, Superconvergence of discontinuous Galerkin solutions for a nonlinear scalar hyperbolic problem. Comput. Methods Appl. Mech. Eng. 195 (2006) 3331–3346. [Google Scholar]
  2. S. Adjerid, K.D. Devine, J.E. Flaherty and L. Krivodonova, A posteriori error estimation for discontinuous Galerkin solutions of hyperbolic problems. Comput. Methods Appl. Mech. Eng. 191 (2002) 1097–1112. [Google Scholar]
  3. J. Bona, H. Chen, O. Karakashian and Y. Xing, Conservative, discontinuous Galerkin methods for the generalized Korteweg–de Vires equation. Math. Comput. 82 (2013) 1401–1432. [Google Scholar]
  4. S.C. Brenner, Poincaré-Friedrichs inequalities for piecewise H1 functions. SIAM J. Numer. Anal. 41 (2003) 306–324. [Google Scholar]
  5. S.C. Brenner, Discrete Sobolev and Poincaré inequalities for piecewise polynomial functions. Electron. Trans. Numer. Anal. 18 (2004) 42–48. [Google Scholar]
  6. W. Cao and Q. Huang, Superconvergence of local discontinuous Galerkin methods for partial differential equations with higher order derivatives. J. Sci. Comput. 72 (2017) 761–791. [Google Scholar]
  7. W. Cao, Z. Zhang and Q. Zou, Superconvergence of discontinuous Galerkin methods for linear hyperbolic equations. SIAM J. Numer. Anal. 52 (2014) 2555–2573. [Google Scholar]
  8. W. Cao, C.-W. Shu, Y. Yang and Z. Zhang, Superconvergence of discontinuous Galerkin methods for two-dimensional hyperbolic equations. SIAM J. Numer. Anal. 53 (2015) 1651–1671. [Google Scholar]
  9. W. Cao, D. Li, Y. Yang and Z. Zhang, Superconvergence of discontinuous Galerkin methods based on upwind-biased fluxes for 1D linear hyperbolic equations. ESAIM: M2AN 51 (2017) 467–486. [EDP Sciences] [Google Scholar]
  10. W. Cao, H. Liu and Z. Zhang, Superconvergence of the direct discontinuous Galerkin method for convection-diffusion equations. Numer. Methods Part. Diff. Equ. 33 (2017) 290–317. [Google Scholar]
  11. W. Cao, C.-W. Shu and Z. Zhang, Superconvergence of discontinuous Galerkin methods for 1-D linear hyperbolic equations with degenerate variable coefficients. ESAIM: M2AN 51 (2017) 2213–2235. [EDP Sciences] [Google Scholar]
  12. W. Cao, C.-W. Shu, Y. Yang and Z. Zhang, Superconvergence of discontinuous Galerkin method for nonlinear hyperbolic equations. SIAM J. Numer. Anal. 56 (2018) 732–765. [Google Scholar]
  13. A. Chen, Y. Cheng, Y. Liu and M. Zhang, Superconvergence of ultra-weak discontinuous Galerkin methods for the linear Schrödinger equation in one dimension. J. Sci. Comput. 82 (2020) 1–44. [Google Scholar]
  14. Y. Cheng and C.-W. Shu, Superconvergence and time evolution of discontinuous Galerkin finite element solutions. J. Comput. Phys. 227 (2008) 9612–9627. [Google Scholar]
  15. Y. Cheng and C.-W. Shu, A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives. Math. Comput. 77 (2009) 699–730. [Google Scholar]
  16. Y. Cheng and C.-W. Shu, Superconvergence of discontinuous Galerkin and local discontinuous Galerkin schemes for linear hyperbolic and convection-diffusion equations in one space dimension. SIAM J. Numer. Anal. 47 (2010) 4044–4072. [Google Scholar]
  17. P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North Holland, Amsterdam, New York (1978). [Google Scholar]
  18. B. Cockburn and C.-W. Shu, TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comput. 52 (1989) 411–435. [Google Scholar]
  19. B. Cockburn and C.-W. Shu, The Runge-Kutta local projection P1-discontinuous Galerkin finite element method for scalar conservation laws. ESAIM:M2AN 25 (1991) 337–361. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  20. B. Cockburn and C.-W. Shu, The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141 (1998) 199–224. [Google Scholar]
  21. B. Cockburn and C.-W. Shu, The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35 (1998) 2440–2463. [Google Scholar]
  22. B. Cockburn, S.-Y. Lin and C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems. J. Comput. Phys. 84 (1989) 90–113. [Google Scholar]
  23. B. Cockburn, S. Hou and C.-W. Shu, The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case. Math. Comput. 54 (1990) 545–581. [Google Scholar]
  24. B. Dong and C.-W. Shu, Analysis of a local discontinuous Galerkin method for linear time-dependent fourth-order problems. SIAM J. Numer. Anal. 47 (2009) 3240–3268. [Google Scholar]
  25. J. Douglas and T. Dupont, Interior penalty procedures for elliptic and parabolic Galerkin methods. Computing Methods in Applied Sciences. Springer, Berlin, Heidelberg (1976) 207–216. [Google Scholar]
  26. S.M. Han, H. Benaroya and T. Wei, Dynamics of transversely vibrating beams using four engineering theories. J. Sound Vibr. 225 (1999) 935–988. [Google Scholar]
  27. L. Ji and Y. Xu, Optimal error estimates of the local discontinuous Galerkin method for Willmore flow of graphs on Cartesian meshes. Int. J. Numer. Anal. Model. 8 (2011) 252–283. [Google Scholar]
  28. L. Krivodonova, J. Xin, J.F. Remacle, N. Chevaugeon and J.E. Flaherty, Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws. Appl. Numer. Math. 48 (2004) 323–338. [Google Scholar]
  29. H. Liu and P. Yin, A mixed discontinuous Galerkin method without interior penalty for time-dependent fourth order problems. J. Sci. Comput. 77 (2018) 467–501. [Google Scholar]
  30. Y. Liu, C.-W. Shu and M. Zhang, Superconvergence of energy-conserving discontinuous Galerkin methods for linear hyperbolic equations. Commun. Appl. Math. Comput. 1 (2019) 101–116. [Google Scholar]
  31. I. Mozolevski, E. Süli and P.R. Bösing, hp-Version a priori error analysis of interior penalty discontinuous Galerkin finite element approximations to the biharmonic equation. J. Sci. Comput. 30 (2007) 465–491. [Google Scholar]
  32. Q. Tao and Y. Xu, Superconvergence of arbitrary Lagrangian-Eulerian discontinuous Galerkin methods for linear hyperbolic equations. SIAM J. Numer. Anal. 57 (2019) 2141–2165. [Google Scholar]
  33. Q. Tao, Y. Xu and C.-W. Shu, An ultraweak-local discontinuous Galerkin method for PDEs with high order spatial derivatives. To appear in Math. Comput. DOI: https://doi.org/10.1090/mcom/3562 (2020). [Google Scholar]
  34. H. Wang, C.-W. Shu and Q. Zhang, Stability and error estimates of local discontinuous Galerkin methods with implicit-explicit time-marching for advection-diffusion problems. SIAM J. Numer. Anal. 53 (2015) 206–227. [Google Scholar]
  35. H. Wang, S. Wang, C.-W. Shu and Q. Zhang, Local discontinuous Galerkin methods with implicit-explicit time-marching for multi-dimensional convection-diffusion problems. ESAIM: M2AN 50 (2016) 1083–1105. [EDP Sciences] [Google Scholar]
  36. Y. Xu and C.-W. Shu, Local discontinuous Galerkin methods for high-order time-dependent partial differential equations. Commun. Comput. Phys. 7 (2010) 1–46. [MathSciNet] [Google Scholar]
  37. Y. Xu and C.-W. Shu, Optimal error estimates of the semi-discrete local discontinuous Galerkin methods for high order wave equations. SIAM J. Numer. Anal. 50 (2012) 79–104. [Google Scholar]
  38. J. Yan and C.-W. Shu, A local discontinuous Galerkin method for KdV type equations. SIAM J. Numer. Anal. 40 (2002) 769–791. [Google Scholar]
  39. J. Yan and C.-W. Shu, Local discontinuous Galerkin methods for partial differential equations with higher order derivatives. J. Sci. Comput. 17 (2002) 27–47. [Google Scholar]
  40. Y. Yang and C.-W. Shu, Analysis of optimal superconvergence of discontinuous Galerkin method for linear hyperbolic equations. SIAM J. Numer. Anal. 50 (2012) 3110–3133. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you