Free Access
Issue
ESAIM: M2AN
Volume 55, Number 3, May-June 2021
Page(s) 763 - 787
DOI https://doi.org/10.1051/m2an/2020074
Published online 05 May 2021
  1. M. Aidelsburger, M. Atala, M. Lohse, J.T. Barreiro, B. Paredes and I. Bloch, Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices. Phys. Rev. Lett. 111 (2013) 185301. [CrossRef] [PubMed] [Google Scholar]
  2. V. Bach, E.H. Lieb and J.P. Solovej, Generalized Hartree-Fock theory and the Hubbard model. J. Stat. Phys. 76 (1994) 3–89. [CrossRef] [MathSciNet] [Google Scholar]
  3. J. Bardeen, L.N. Cooper and J.R. Schrieffer, Microscopic theory of superconductivity. Phys. Rev. 106 (1957) 162–164. [CrossRef] [MathSciNet] [Google Scholar]
  4. J. Bardeen, L.N. Cooper and J.R. Schrieffer, Theory of superconductivity. Phys. Rev. 108 (1957) 1175–1204. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  5. L.S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker and R.C. Whaley, ScaLAPACK Users’ Guide. SIAM, Philadelphia, PA (1997). [CrossRef] [Google Scholar]
  6. J.-P. Blaizot and G. Ripka, Quantum Theory of Finite Systems. MIT Press (1986). [Google Scholar]
  7. G. Bräunlich, C. Hainzl and R. Seiringer, Translation-invariant quasi-free states for fermionic systems and the BCS approximation. Rev. Math. Phys. 26 (2014) 1450012. [Google Scholar]
  8. Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras and P. Jarillo-Herrero, Unconventional superconductivity in magic-angle graphene superlattices. Nature 556 (2018) 43. [PubMed] [Google Scholar]
  9. S. Chiesa and S. Zhang, Phases of attractive spin-imbalanced fermions in square lattices. Phys. Rev. A 88 (2013) 043624. [Google Scholar]
  10. D. Cocks, P.P. Orth, S. Rachel, M. Buchhold, K. Le Hur and W. Hofstetter, Time-reversal-invariant Hofstadter-Hubbard model with ultracold fermions. Phys. Rev. Lett. 109 (2012) 205303. [PubMed] [Google Scholar]
  11. L. Covaci, F.M. Peeters and M. Berciu, Efficient numerical approach to inhomogeneous superconductivity: the Chebyshev-Bogoliubov–de Gennes method. Phys. Rev. Lett. 105 (2010) 167006. [PubMed] [Google Scholar]
  12. S.M. Cronenwett, T.H. Oosterkamp and L.P. Kouwenhoven, A tunable kondo effect in quantum dots. Science 281 (1998) 540–544. [CrossRef] [PubMed] [Google Scholar]
  13. A. Erisman and W. Tinney, On computing certain elements of the inverse of a sparse matrix. Comm. ACM 18 (1975) 177. [Google Scholar]
  14. A. Georges, G. Kotliar, W. Krauth and M.J. Rozenberg, Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod. Phys. 68 (1996) 13. [CrossRef] [Google Scholar]
  15. C. Hainzl, M. Lewin and E. Séré, Self-consistent solution for the polarized vacuum in a no-photon QED model. J. Phys. A: Math. General 38 (2005) 4483–4499. [Google Scholar]
  16. C. Hainzl, M. Lewin and J.P. Solovej, The mean-field approximation in quantum electrodynamics: the no-photon case. Commun. Pure Appl. Math. 60 (2007) 546–596. [Google Scholar]
  17. D.R. Hofstadter, Energy levels and wave functions of bloch electrons in rational and irrational magnetic fields. Phys. Rev. B 14 (1976) 2239–2249. [Google Scholar]
  18. S. Goedecker, Linear scaling electronic structure methods. Rev. Mod. Phys. 71 (1999) 1085–1123. [Google Scholar]
  19. D. Goldhaber-Gordon, J. Göres, M.A. Kastner, H. Shtrikman, D. Mahalu and U. Meirav, From the kondo regime to the mixed-valence regime in a single-electron transistor. Phys. Rev. Lett. 81 (1998) 5225. [CrossRef] [Google Scholar]
  20. M. Iskin, Attractive Hofstadter-Hubbard model with imbalanced chemical and vector potentials. Phys. Rev. A – At. Mol. Opt. Phy. 91 (2015) 1–12. [Google Scholar]
  21. M. Iskin, Hofstadter-Hubbard model with opposite magnetic fields: Bardeen–Cooper–Schrieffer pairing and superfluidity in the nearly flat butterfly bands. Phys. Rev. A 96 (2017). [CrossRef] [Google Scholar]
  22. M. Jacquelin, L. Lin and C. Yang, PSelInv – A distributed memory parallel algorithm for selected inversion: the symmetric case. ACM Trans. Math. Softw. 43 (2016) 21. [Google Scholar]
  23. M. Jacquelin, L. Lin and C. Yang, PSelInv – A distributed memory parallel algorithm for selected inversion: the non-symmetric case. Parallel Comput. 74 (2018) 84. [Google Scholar]
  24. G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20 (1998) 359–392. [CrossRef] [MathSciNet] [Google Scholar]
  25. G. Karypis and V. Kumar, A parallel algorithm for multilevel graph partitioning and sparse matrix ordering. J. Parallel Distrib. Comput. 48 (1998) 71–85. [Google Scholar]
  26. C.J. Kennedy, G.A. Siviloglou, H. Miyake, W.C. Burton and W. Ketterle, Spin-orbit coupling and quantum spin hall effect for neutral atoms without spin flips. Phys. Rev. Lett. 111 (2013) 225301. [PubMed] [Google Scholar]
  27. G. Knizia and G. Chan, Density matrix embedding: a simple alternative to dynamical mean-field theory. Phys. Rev. Lett. 109 (2012) 186404. [CrossRef] [PubMed] [Google Scholar]
  28. D.S. Kosov, Nonequilibrium fock space for the electron transport problem. J. Chem. Phys. 131 (2009) 171102. [PubMed] [Google Scholar]
  29. C.V. Kraus and J.I. Cirac, Generalized Hartree-Fock theory for interacting fermions in lattices: numerical methods. New J. Phys. 12 (2010) 113004. [Google Scholar]
  30. A.L. Kuzemsky, Variational principle of Bogoliubov and generalized mean fields in many-particle interacting systems. Int. J. Mod. Phys. B 29 (2015) 1530010. [Google Scholar]
  31. A. Kuzmin, M. Luisier and O. Schenk, Fast methods for computing selected elements of the Green’s function in massively parallel nanoelectronic device simulations. In: Euro-Par 2013 Parallel Proc. Springer (2013) 533–544. [Google Scholar]
  32. L.D. Landau and E.M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory. Butterworth-Heinemann (1991). [Google Scholar]
  33. E. Lenzmann and M. Lewin, Minimizers for the Hartree–Fock–Bogoliubov theory of neutron stars and white dwarfs. Duke Math. J. 152 (2010) 257–315. [CrossRef] [Google Scholar]
  34. M. Lewin and S. Paul, A numerical perspective on Hartree–Fock–Bogoliubov theory. ESAIM: M2AN 48 (2014) 53–86. [CrossRef] [EDP Sciences] [Google Scholar]
  35. X.S. Li and J.W. Demmel, SuperLU_DIST: a scalable distributed-memory sparse direct solver for unsymmetric linear systems. ACM Trans. Math. Softw. 29 (2003) 110. [Google Scholar]
  36. E.H. Lieb, Variational principle for many-fermion systems. Phys. Rev. Lett. 46 (1981) 457–459. [CrossRef] [Google Scholar]
  37. L. Lin, J. Lu, L. Ying and E. Weinan, Pole-based approximation of the Fermi-Dirac function. Chin. Ann. Math. 30B (2009) 729. [Google Scholar]
  38. L. Lin, J. Lu, L. Ying, R. Car and E. Weinan, Fast algorithm for extracting the diagonal of the inverse matrix with application to the electronic structure analysis of metallic systems. Comm. Math. Sci. 7 (2009) 755. [Google Scholar]
  39. L. Lin, C. Yang, J. Meza, J. Lu, L. Ying and E. Weinan, SelInv – An algorithm for selected inversion of a sparse symmetric matrix. ACM. Trans. Math. Softw. 37 (2011) 40. [Google Scholar]
  40. L. Lin, M. Chen, C. Yang and L. He, Accelerating atomic orbital-based electronic structure calculation via pole expansion and selected inversion. J. Phys.: Condens. Matter 25 (2013) 295501. [CrossRef] [Google Scholar]
  41. L. Lin, A. Garca, G. Huhs and C. Yang, Massively parallel method for efficient and accurate ab initio materials simulation without matrix diagonalization. J. Phys.: Condens. Matter 26 (2014) 305503. [Google Scholar]
  42. A. Marek, V. Blum, R. Johanni, V. Havu, B. Lang, T. Auckenthaler, A. Heinecke, H.-J. Bungartz and H. Lederer, The {ELPA} library: scalable parallel eigenvalue solutions for electronic structure theory and computational science. J. Phys.: Condens. Matter. 26 (2014) 213201. [Google Scholar]
  43. J.E. Moussa, Minimax rational approximation of the fermi-dirac distribution. J. Chem. Phys. 145 (2016) 164108. [PubMed] [Google Scholar]
  44. Y. Nagai, Y. Ota and M. Machida, Efficient numerical self-consistent mean-field approach for fermionic many-body systems by polynomial expansion on spectral density. J. Phys. Soc. Jpn. 81 (2012). [Google Scholar]
  45. D. Nakamura, A. Ikeda, H. Sawabe, Y.H. Matsuda and S. Takeyama, Record indoor magnetic field of 1200 T generated by electromagnetic flux-compression. Rev. Sci. Instrum. 89 (2018) 95106. [Google Scholar]
  46. J.W. Negele and H. Orland, Quantum Many-Particle Systems. Westview (1988). [Google Scholar]
  47. P. Pulay, Convergence acceleration of iterative sequences: the case of SCF iteration. Chem. Phys. Lett. 73 (1980) 393–398. [CrossRef] [Google Scholar]
  48. P. Pulay, Improved SCF convergence acceleration. J. Comput. Chem. 3 (1982) 54–69. [Google Scholar]
  49. P. Rosenberg, S. Chiesa and S. Zhang, FFLO order in ultra-cold atoms in three-dimensional optical lattices. J. Phys. Condens. Matter 27 (2015) 225601. [PubMed] [Google Scholar]
  50. H. Shi and S. Zhang, Many-body computations by stochastic sampling in Hartree–Fock–Bogoliubov space. Phys. Rev. B 95 (2017) 045144. [Google Scholar]
  51. A. Szabo and N.S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory. McGraw-Hill, New York (1989). [Google Scholar]
  52. K. Takahashi, J. Fagan and M. Chin, Formation of a sparse bus impedance matrix and its application to short circuit study. In: 8th PICA Conf. Proc. (1973). [Google Scholar]
  53. R.O. Umucalllar and M. Iskin, BCS theory of time-reversal-symmetric Hofstadter-Hubbard Model. Phys. Rev. Lett. 119 (2017). [Google Scholar]
  54. L. Wang, H.-H. Hung and M. Troyer, Topological phase transition in the Hofstadter-Hubbard model. Phys. Rev. B 90 (2014) 205111. [Google Scholar]
  55. C. Zeng, T.D. Stanescu, C. Zhang, V.W. Scarola and S. Tewari, Majorana corner modes with solitons in an attractive Hubbard-Hofstadter model of cold atom optical lattices. Phys. Rev. Lett. 123 (2019) 060402. [PubMed] [Google Scholar]
  56. G.-Q. Zha, L. Covaci, S.-P. Zhou and F.M. Peeters, Proximity-induced pseudogap in mesoscopic superconductor/normal-metal bilayers. Phys. Rev. B 82 (2010) 140502. [Google Scholar]
  57. B.X. Zheng and G.K.L. Chan, Ground-state phase diagram of the square lattice Hubbard model from density matrix embedding theory. Phys. Rev. B 93 (2016) 1–17. [Google Scholar]
  58. B.X. Zheng, C.M. Chung, P. Corboz, G. Ehlers, M.P. Qin, R.M. Noack, H. Shi, S.R. White, S. Zhang and G.K.L. Chan, Stripe order in the underdoped region of the two-dimensional Hubbard model. Science 358 (2017) 1155–1160. [PubMed] [Google Scholar]
  59. J.-X. Zhu, Bogoliubov-de Gennes Method and Its Applications. Springer 924 (2016). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you