Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Turbulence driven goal-oriented anisotropic mesh adaptation for RANS simulations in aerodynamics

F. Clerici, P.R. Spalart and F. Alauzet
Journal of Computational Physics 113191 (2024)
https://doi.org/10.1016/j.jcp.2024.113191

Analytical and numerical analyses of a viscous strain gradient problem involving type Ⅱ thermoelasticity

Noelia Bazarra, José R. Fernández, Jaime E. Muñoz-Rivera, Elena Ochoa and Ramón Quintanilla
AIMS Mathematics 9 (7) 16998 (2024)
https://doi.org/10.3934/math.2024825

SUPG-stabilized stabilization-free VEM: a numerical investigation

Andrea Borio, Martina Busetto and Francesca Marcon
Mathematics in Engineering 6 (1) 173 (2024)
https://doi.org/10.3934/mine.2024008

The a posteriori error estimates and an adaptive algorithm of the discontinuous Galerkin method for the modified transmission eigenvalue problem with absorbing media

Shixi Wang, Hai Bi and Yidu Yang
Numerical Algorithms (2024)
https://doi.org/10.1007/s11075-024-01981-y

Exponential Convergence of a Generalized FEM for Heterogeneous Reaction-Diffusion Equations

Chupeng Ma and J. M. Melenk
Multiscale Modeling & Simulation 22 (1) 256 (2024)
https://doi.org/10.1137/22M1522231

Trefftz discontinuous Galerkin discretization for the Stokes problem

Philip L. Lederer, Christoph Lehrenfeld and Paul Stocker
Numerische Mathematik 156 (3) 979 (2024)
https://doi.org/10.1007/s00211-024-01404-z

Stability and convergence of relaxed scalar auxiliary variable schemes for Cahn–Hilliard systems with bounded mass source

Kei Fong Lam and Ru Wang
Journal of Numerical Mathematics 32 (3) 233 (2024)
https://doi.org/10.1515/jnma-2023-0021

Lowest-degree robust finite element schemes for inhomogeneous bi-Laplace problems

Bin Dai, Huilan Zeng, Chen-Song Zhang and Shuo Zhang
Applied Numerical Mathematics (2024)
https://doi.org/10.1016/j.apnum.2024.05.010

Adaptive Multi-level Algorithm for a Class of Nonlinear Problems

Dongho Kim, Eun-Jae Park and Boyoon Seo
Computational Methods in Applied Mathematics 24 (3) 747 (2024)
https://doi.org/10.1515/cmam-2023-0088

Registration-based model reduction of parameterized PDEs with spatio-parameter adaptivity

Nicolas Barral, Tommaso Taddei and Ishak Tifouti
Journal of Computational Physics 112727 (2023)
https://doi.org/10.1016/j.jcp.2023.112727

A priori and a posteriori error analysis for a hybrid formulation of a prestressed shell model

Serge Nicaise, Ismael Merabet and Rihana Rezzag Bara
Confluentes Mathematici 14 (2) 53 (2023)
https://doi.org/10.5802/cml.87

A posteriori error estimates for the time-dependent Navier-Stokes system coupled with the convection-diffusion-reaction equation

Jad Dakroub, Joanna Faddoul, Pascal Omnes and Toni Sayah
Advances in Computational Mathematics 49 (4) (2023)
https://doi.org/10.1007/s10444-023-10066-8

Iterative solution of spatial network models by subspace decomposition

Morgan Görtz, Fredrik Hellman and Axel Målqvist
Mathematics of Computation 93 (345) 233 (2023)
https://doi.org/10.1090/mcom/3861

A Posteriori Error Estimates for Darcy–Forchheimer’s Problem

Toni Sayah, Georges Semaan and Faouzi Triki
Computational Methods in Applied Mathematics 23 (2) 517 (2023)
https://doi.org/10.1515/cmam-2022-0047

Unifying a posteriori error analysis of five piecewise quadratic discretisations for the biharmonic equation

Carsten Carstensen, Benedikt Gräßle and Neela Nataraj
Journal of Numerical Mathematics (2023)
https://doi.org/10.1515/jnma-2022-0092

Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies

Frits de Prenter, Clemens V. Verhoosel, E. Harald van Brummelen, Mats G. Larson and Santiago Badia
Archives of Computational Methods in Engineering 30 (6) 3617 (2023)
https://doi.org/10.1007/s11831-023-09913-0

A note on a posteriori error analysis for dual mixed methods with mixed boundary conditions

Tomás P. Barrios, Rommel Bustinza and Camila Campos
Numerical Methods for Partial Differential Equations 39 (5) 3897 (2023)
https://doi.org/10.1002/num.23029

Numerical homogenization of fractal interface problems

Ralf Kornhuber, Joscha Podlesny and Harry Yserentant
ESAIM: Mathematical Modelling and Numerical Analysis 56 (4) 1451 (2022)
https://doi.org/10.1051/m2an/2022046

Anisotropic Adaptive Finite Elements for an Elliptic Problem with Strongly Varying Diffusion Coefficient

Samuel Dubuis, Paride Passelli and Marco Picasso
Computational Methods in Applied Mathematics 22 (3) 529 (2022)
https://doi.org/10.1515/cmam-2022-0036

Identification of Matrix Diffusion Coefficient in a Parabolic PDE

Subhankar Mondal and M. Thamban Nair
Computational Methods in Applied Mathematics 22 (2) 413 (2022)
https://doi.org/10.1515/cmam-2021-0061

A posteriori error analysis of Banach spaces-based fully-mixed finite element methods for Boussinesq-type models

Gabriel N. Gatica, Cristian Inzunza, Ricardo Ruiz-Baier and Felipe Sandoval
Journal of Numerical Mathematics 30 (4) 325 (2022)
https://doi.org/10.1515/jnma-2021-0101

The a Priori and a Posteriori Error Estimates of DG Method for the Steklov Eigenvalue Problem in Inverse Scattering

Yanjun Li, Hai Bi and Yidu Yang
Journal of Scientific Computing 91 (1) (2022)
https://doi.org/10.1007/s10915-022-01787-x

A Posteriori Error Estimates for a Nonconforming Finite Element Discretization of the Stokes–Biot System

Koffi Wilfrid Houédanou and Maria Alessandra Ragusa
Discrete Dynamics in Nature and Society 2022 (1) (2022)
https://doi.org/10.1155/2022/7472965

Numerical analysis for a Cahn–Hilliard system modelling tumour growth with chemotaxis and active transport

Harald Garcke and Dennis Trautwein
Journal of Numerical Mathematics 30 (4) 295 (2022)
https://doi.org/10.1515/jnma-2021-0094

Adaptive space–time finite element methods for parabolic optimal control problems

Ulrich Langer and Andreas Schafelner
Journal of Numerical Mathematics 30 (4) 247 (2022)
https://doi.org/10.1515/jnma-2021-0059

A dual-phase-lag porous-thermoelastic problem with microtemperatures

N. Bazarra, J. R. Fernández and R. Quintanilla
Electronic Research Archive 30 (4) 1236 (2022)
https://doi.org/10.3934/era.2022065

A posteriori error estimates for the large eddy simulation applied to stationary Navier–Stokes equations

Ghina Nassreddine, Pascal Omnes and Toni Sayah
Numerical Methods for Partial Differential Equations 38 (5) 1468 (2022)
https://doi.org/10.1002/num.22850

Numerical Analysis and Comparison of Four Stabilized Finite Element Methods for the Steady Micropolar Equations

Jingnan Liu and Demin Liu
Entropy 24 (4) 454 (2022)
https://doi.org/10.3390/e24040454

Augmented Lagrangian preconditioners for the Oseen–Frank model of nematic and cholesteric liquid crystals

Jingmin Xia, Patrick E. Farrell and Florian Wechsung
BIT Numerical Mathematics 61 (2) 607 (2021)
https://doi.org/10.1007/s10543-020-00838-9

Local finite element approximation of Sobolev differential forms

Evan Gawlik, Michael J. Holst and Martin W. Licht
ESAIM: Mathematical Modelling and Numerical Analysis 55 (5) 2075 (2021)
https://doi.org/10.1051/m2an/2021034

Error Estimation of Euler Method for the Instationary Stokes–Biot Coupled Problem

Koffi Wilfrid Houédanou, Jamal Adetola and M. M. Bhatti
Journal of Mathematics 2021 1 (2021)
https://doi.org/10.1155/2021/5982948

An ADMM-Newton-CNN numerical approach to a TV model for identifying discontinuous diffusion coefficients in elliptic equations: convex case with gradient observations

Wenyi Tian, Xiaoming Yuan and Hangrui Yue
Inverse Problems 37 (8) 085004 (2021)
https://doi.org/10.1088/1361-6420/ac0e80

Identity for Deviations from the Exact Solution of the Problem $$\Lambda {\text{*}}\mathcal{A}\Lambda u + \ell = 0$$ and Its Implications

S. I. Repin
Computational Mathematics and Mathematical Physics 61 (12) 1943 (2021)
https://doi.org/10.1134/S0965542521120113

Hierarchical Argyris Finite Element Method for Adaptive and Multigrid Algorithms

Carsten Carstensen and Jun Hu
Computational Methods in Applied Mathematics 21 (3) 529 (2021)
https://doi.org/10.1515/cmam-2021-0083

Staggered Taylor–Hood and Fortin elements for Stokes equations of pressure boundary conditions in Lipschitz domain

Zhijie Du, Huoyuan Duan and Wei Liu
Numerical Methods for Partial Differential Equations 36 (1) 185 (2020)
https://doi.org/10.1002/num.22425

Adaptive Space-Time Finite Element Methods for Non-autonomous Parabolic Problems with Distributional Sources

Ulrich Langer and Andreas Schafelner
Computational Methods in Applied Mathematics 20 (4) 677 (2020)
https://doi.org/10.1515/cmam-2020-0042

Heuristic discrepancy principle for variational regularization of inverse problems

Huan Liu, Rommel Real, Xiliang Lu, Xianzheng Jia and Qinian Jin
Inverse Problems 36 (7) 075013 (2020)
https://doi.org/10.1088/1361-6420/ab844a

Finite element theory on curved domains with applications to discontinuous Galerkin finite element methods

Ellya L. Kawecki
Numerical Methods for Partial Differential Equations 36 (6) 1492 (2020)
https://doi.org/10.1002/num.22489

Spectral Element Methods a Priori and a Posteriori Error Estimates for Penalized Unilateral Obstacle Problem

Bochra Djeridi, Radouen Ghanem and Hocine Sissaoui
Journal of Scientific Computing 85 (3) (2020)
https://doi.org/10.1007/s10915-020-01355-1

A Novel Method for Circuits of Perfect Electric Conductors in Unstructured Particle-in-Cell Plasma–Object Interaction Simulations

Sigvald Marholm, Diako Darian, Mikael Mortensen, Richard Marchand and Wojciech J. Miloch
IEEE Transactions on Plasma Science 48 (8) 2856 (2020)
https://doi.org/10.1109/TPS.2020.3010561

A Posteriori Error Estimates for Hughes Stabilized SUPG Technique and Adaptive Refinement for a Convection-Diffusion Problem

Brehmit Kaur and Vivek Sangwan
Advances in Mathematical Physics 2020 1 (2020)
https://doi.org/10.1155/2020/1361498

Energy Transfers in Atmosphere and Ocean

Harald Garcke, Michael Hinze and Christian Kahle
Mathematics of Planet Earth, Energy Transfers in Atmosphere and Ocean 1 287 (2019)
https://doi.org/10.1007/978-3-030-05704-6_9

Error Estimates for Advanced Galerkin Methods

Marcus Olavi Rüter
Lecture Notes in Applied and Computational Mechanics, Error Estimates for Advanced Galerkin Methods 88 171 (2019)
https://doi.org/10.1007/978-3-030-06173-9_6

Analysis of a Poro-Thermo-Viscoelastic Model of Type III

Noelia Bazarra, José A. López-Campos, Marcos López, Abraham Segade and José R. Fernández
Symmetry 11 (10) 1214 (2019)
https://doi.org/10.3390/sym11101214

A Regularization Approach for an Inverse Source Problem in Elliptic Systems from Single Cauchy Data

Michael Hinze, Bernd Hofmann and Tran Nhan Tam Quyen
Numerical Functional Analysis and Optimization 40 (9) 1080 (2019)
https://doi.org/10.1080/01630563.2019.1596953

Operator-Adapted Wavelets, Fast Solvers, and Numerical Homogenization

Houman Owhadi and Clint Scovel
Operator-Adapted Wavelets, Fast Solvers, and Numerical Homogenization (2019)
https://doi.org/10.1017/9781108594967

A posteriori error analysis of an augmented fully mixed formulation for the nonisothermal Oldroyd–Stokes problem

Sergio Caucao, Gabriel N. Gatica and Ricardo Oyarzúa
Numerical Methods for Partial Differential Equations 35 (1) 295 (2019)
https://doi.org/10.1002/num.22301

A posteriori error estimates for a fully discrete approximation of Sobolev equations

Serge Nicaise and Fatiha Bekkouche
Confluentes Mathematici 11 (1) 3 (2019)
https://doi.org/10.5802/cml.53

BEM-based Finite Element Approaches on Polytopal Meshes

Steffen Weißer
Lecture Notes in Computational Science and Engineering, BEM-based Finite Element Approaches on Polytopal Meshes 130 65 (2019)
https://doi.org/10.1007/978-3-030-20961-2_3

Efficient implementation of the localized orthogonal decomposition method

Christian Engwer, Patrick Henning, Axel Målqvist and Daniel Peterseim
Computer Methods in Applied Mechanics and Engineering 350 123 (2019)
https://doi.org/10.1016/j.cma.2019.02.040

Analysis of a decoupled time‐stepping algorithm for reduced MHD system modeling magneto‐convection

Sivaguru S. Ravindran
Numerical Methods for Partial Differential Equations 34 (6) 1953 (2018)
https://doi.org/10.1002/num.22270

A posteriori error analysis for solving the Navier‐Stokes problem and convection‐diffusion equation

Rahma Agroum
Numerical Methods for Partial Differential Equations 34 (2) 401 (2018)
https://doi.org/10.1002/num.22204

A new defect‐correction method for the stationary Navier‐Stokes equations based on pressure projection

Juan Wen and Yinnian He
Mathematical Methods in the Applied Sciences 41 (1) 250 (2018)
https://doi.org/10.1002/mma.4608

Numerical analysis of a contact problem in poro‐thermoelasticity with microtemperatures

Noelia Bazarra and José R. Fernández
ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 98 (7) 1190 (2018)
https://doi.org/10.1002/zamm.201700173

Active Particles, Volume 1

Giacomo Albi, Martin Burger, Jan Haskovec, Peter Markowich and Matthias Schlottbom
Modeling and Simulation in Science, Engineering and Technology, Active Particles, Volume 1 1 (2017)
https://doi.org/10.1007/978-3-319-49996-3_1

An augmented stress-based mixed finite element method for the steady state Navier-Stokes equations with nonlinear viscosity

Jessika Camaño, Gabriel N. Gatica, Ricardo Oyarzúa and Ricardo Ruiz-Baier
Numerical Methods for Partial Differential Equations 33 (5) 1692 (2017)
https://doi.org/10.1002/num.22166

Higher-order discontinuous Galerkin time stepping and local projection stabilization techniques for the transient Stokes problem

Naveed Ahmed, Simon Becher and Gunar Matthies
Computer Methods in Applied Mechanics and Engineering 313 28 (2017)
https://doi.org/10.1016/j.cma.2016.09.026

A linear regularization method for a nonlinear parameter identification problem

M. Thamban Nair and Samprita Das Roy
Journal of Inverse and Ill-posed Problems 25 (6) 687 (2017)
https://doi.org/10.1515/jiip-2015-0091

A Priori and A Posteriori Estimates of Conforming and Mixed FEM for a Kirchhoff Equation of Elliptic Type

Asha K. Dond and Amiya K. Pani
Computational Methods in Applied Mathematics 17 (2) 217 (2017)
https://doi.org/10.1515/cmam-2016-0041

Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations

Daniel Peterseim
Lecture Notes in Computational Science and Engineering, Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations 114 343 (2016)
https://doi.org/10.1007/978-3-319-41640-3_11

Numerical Approximation of Partial Differential Equations

Sören Bartels
Texts in Applied Mathematics, Numerical Approximation of Partial Differential Equations 64 155 (2016)
https://doi.org/10.1007/978-3-319-32354-1_4

Piecewise polynomial interpolation in Muckenhoupt weighted Sobolev spaces and applications

Ricardo H. Nochetto, Enrique Otárola and Abner J. Salgado
Numerische Mathematik 132 (1) 85 (2016)
https://doi.org/10.1007/s00211-015-0709-6

Construction of Scalar and Vector Finite Element Families on Polygonal and Polyhedral Meshes

Andrew Gillette, Alexander Rand and Chandrajit Bajaj
Computational Methods in Applied Mathematics 16 (4) 667 (2016)
https://doi.org/10.1515/cmam-2016-0019

Forty Years of the Crouzeix‐Raviart element

Susanne C. Brenner
Numerical Methods for Partial Differential Equations 31 (2) 367 (2015)
https://doi.org/10.1002/num.21892

Double complexes and local cochain projections

Richard S. Falk and Ragnar Winther
Numerical Methods for Partial Differential Equations 31 (2) 541 (2015)
https://doi.org/10.1002/num.21922

A posteriori error control and adaptivity for Crank–Nicolson finite element approximations for the linear Schrödinger equation

Theodoros Katsaounis and Irene Kyza
Numerische Mathematik 129 (1) 55 (2015)
https://doi.org/10.1007/s00211-014-0634-0

A PDE Approach to Fractional Diffusion in General Domains: A Priori Error Analysis

Ricardo H. Nochetto, Enrique Otárola and Abner J. Salgado
Foundations of Computational Mathematics 15 (3) 733 (2015)
https://doi.org/10.1007/s10208-014-9208-x

Constant-free explicit error estimator with sharp upper error bound property for adaptive FE analysis in elasticity and fracture

T. Gerasimov, E. Stein and P. Wriggers
International Journal for Numerical Methods in Engineering 101 (2) 79 (2015)
https://doi.org/10.1002/nme.4768

Mathematical and Numerical Foundations of Turbulence Models and Applications

Tomás Chacón Rebollo and Roger Lewandowski
Modeling and Simulation in Science, Engineering and Technology, Mathematical and Numerical Foundations of Turbulence Models and Applications 317 (2014)
https://doi.org/10.1007/978-1-4939-0455-6_9

A mixed formulation of a sharp interface model of stokes flow with moving contact lines

Shawn W. Walker
ESAIM: Mathematical Modelling and Numerical Analysis 48 (4) 969 (2014)
https://doi.org/10.1051/m2an/2013130

An adaptive finite element method in $L^2$-TV-based image denoising

Michael Hintermüller and Monserrat Rincon-Camacho
Inverse Problems & Imaging 8 (3) 685 (2014)
https://doi.org/10.3934/ipi.2014.8.685

A posteriorierror estimates for elliptic problems with Dirac measure terms in weighted spaces

Juan Pablo Agnelli, Eduardo M. Garau and Pedro Morin
ESAIM: Mathematical Modelling and Numerical Analysis 48 (6) 1557 (2014)
https://doi.org/10.1051/m2an/2014010

Interface problems with quadratic X-FEM: design of a stable multiplier space and error analysis

G. Ferté, P. Massin and N. Moës
International Journal for Numerical Methods in Engineering 100 (11) 834 (2014)
https://doi.org/10.1002/nme.4787

Finite and Boundary Element Tearing and Interconnecting Solvers for Multiscale Problems

Clemens Pechstein
Lecture Notes in Computational Science and Engineering, Finite and Boundary Element Tearing and Interconnecting Solvers for Multiscale Problems 90 247 (2013)
https://doi.org/10.1007/978-3-642-23588-7_5

The Finite Element Method: Theory, Implementation, and Applications

Mats G. Larson and Fredrik Bengzon
Texts in Computational Science and Engineering, The Finite Element Method: Theory, Implementation, and Applications 10 177 (2013)
https://doi.org/10.1007/978-3-642-33287-6_7

Adaptive reduced basis finite element heterogeneous multiscale method

Assyr Abdulle and Yun Bai
Computer Methods in Applied Mechanics and Engineering 257 203 (2013)
https://doi.org/10.1016/j.cma.2013.01.002