The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
Reinhard Scholz
RAIRO. Anal. numér., 11 2 (1977) 209-216
Published online: 2017-02-01
This article has been cited by the following article(s):
19 articles
$L^\infty$ Norm Error Estimates for HDG Methods Applied to the Poisson Equation with an Application to the Dirichlet Boundary Control Problem
Gang Chen, Peter B. Monk and Yangwen Zhang SIAM Journal on Numerical Analysis 59 (2) 720 (2021) https://doi.org/10.1137/20M1338551
On the coupling of MIXED-FEM and BEM for an exterior Helmholtz problem in the plane
Gabriel N. Gatica and Salim Meddahi Numerische Mathematik 100 (4) 663 (2005) https://doi.org/10.1007/s00211-005-0582-9
On a mixed finite element formulation of a second‐order quasilinear problem in the plane
Salim Meddahi Numerical Methods for Partial Differential Equations 20 (1) 90 (2004) https://doi.org/10.1002/num.10077
L
∞-convergence of mixed finite element method for Laplacian operator
Huanzhen Chen and Ziwen Jiang Korean Journal of Computational & Applied Mathematics 7 (1) 61 (2000) https://doi.org/10.1007/BF03009928
Error estimates for mixed finite element methods for nonlinear parabolic problems
So‐Hsiang Chou and Qian Li Numerical Methods for Partial Differential Equations 8 (4) 395 (1992) https://doi.org/10.1002/num.1690080407
Finite Element Methods (Part 1)
J.E. Roberts and J.-M. Thomas Handbook of Numerical Analysis, Finite Element Methods (Part 1) 2 523 (1991) https://doi.org/10.1016/S1570-8659(05)80041-9
Asymptotic expansions andL ?-error estimates for mixed finite element methods for second order elliptic problems
Junping Wang Numerische Mathematik 55 (4) 401 (1989) https://doi.org/10.1007/BF01396046
Superconvergence of mixed finite element methods on rectangular domains
J. Douglas and J. Wang CALCOLO 26 (2-4) 121 (1989) https://doi.org/10.1007/BF02575724
Error analysis in $L^p \leqslant p \leqslant \infty $, for mixed finite element methods for linear and quasi-linear elliptic problems
Ricardo G. Durán ESAIM: Mathematical Modelling and Numerical Analysis 22 (3) 371 (1988) https://doi.org/10.1051/m2an/1988220303711
Finite Elements
F. Brezzi ICASE/NASA LaRC Series, Finite Elements 34 (1988) https://doi.org/10.1007/978-1-4612-3786-0_2
A new mixed formulation for elasticity
Douglas N. Arnold and Richard S. Falk Numerische Mathematik 53 (1-2) 13 (1988) https://doi.org/10.1007/BF01395876
Optimal L?-error estimates for nonconforming and mixed finite element methods of lowest order
Lucia Gastaldi and Ricardo Nochetto Numerische Mathematik 50 (5) 587 (1987) https://doi.org/10.1007/BF01408578
Global estimates for mixed methods for second order elliptic equations
Jim Douglas and Jean E. Roberts Mathematics of Computation 44 (169) 39 (1985) https://doi.org/10.1090/S0025-5718-1985-0771029-9
Mixed finite element methods for quasilinear second-order elliptic problems
F. A. Milner Mathematics of Computation 44 (170) 303 (1985) https://doi.org/10.1090/S0025-5718-1985-0777266-1
On the rate of convergence for the approximation of nonlinear problems
J. Descloux, J. Rappaz and R. Scholz Mathematics of Computation 45 (171) 51 (1985) https://doi.org/10.1090/S0025-5718-1985-0790644-X
A family of higher order mixed finite element methods for plane elasticity
Douglas N. Arnold, Jim Douglas and Chaitan P. Gupta Numerische Mathematik 45 (1) 1 (1984) https://doi.org/10.1007/BF01379659
A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media
Jim Jr. Douglas, Richard E. Ewing and Mary Fanett Wheeler RAIRO. Analyse numérique 17 (3) 249 (1983) https://doi.org/10.1051/m2an/1983170302491
OptimalL ∞-estimates for a mixed finite element method for second order elliptic and parabolic problems
R. Scholz Calcolo 20 (3) 355 (1983) https://doi.org/10.1007/BF02576470
A remark on the rate of convergence for a mixed finite element method for second order problems
R. Scholz Numerical Functional Analysis and Optimization 4 (3) 269 (1982) https://doi.org/10.1080/01630568208816117